4. Energy equation for surface gravity waves

Equations of Motion

P% =-Vp-gpk (1) p = constant
Velu=0 (2) D = constant

Multiply (1) by u

(plis D)+ Te Vo gpw =0
. . 0z
In the linearized case, at every level z w = e and

[ pel+gpz]; + Vo (pT) =0

or rate of change (kinetic + potential energy) + divergence (energy flux) = 0
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Figure 1.

If we integrate from z = -D to z = n, we obtain the kinetic and potential energy and

energy flux per unit horizontal area:
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or %[KE+ PE]+ VY, ®Efiux = 0

Rate of change = horizontal divergence of wave energy flux
Bar denotes the quantities per unit horizontal area

Notice:

1) In the expression for the integrated potential density:
%pg(nz—Dz) we have neglected the term proportional to D® as an irrelevant

2
constant and al: 0.
ot

2) Inthe integral for the kinetic energy we can integrate only to z = 0. In fact we are
calculating energy to second order in the wave amplitude. To do this, for PE, we
must integrate to n to obtain nz(s a2). In the KE, the integral to 1 would include

a correction of 0(u?n)=0(a%), hence negligible. Let us now consider specifically

the surface gravity wave field in one horizontal dimension (x,z,t):

n=a cos(kx—ot) ®2 =gk tanh(kD)

aw
=—————cosh k(z + D) cos(kx — ot
¢ = sinh(kD) (z:+D)coskx—ot)
p=-— gz+L2acosh k(z + D)cos(kx — wt)
P K sinh(kD)

u=—22 _cosh k(z+D)cos(kx— ot)
sinh(kD)

w=—22__sinh k(z+D)sin(kx— ot)
sinh(kD)



PE = %pga2 cos? (kx — ot)
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Let us now average both quantities over a wave period, indicated by < >
<PE >= % pg a’

2 2J~ lcosh2k(z+D)d _

as o’ = gktanh(kD)
D4 sinh?(KD)

<kE >=pa“o
2 21 S|nh(2kD)

p —_—
8 k sinh? (kD)

sinh(kD)cosh(kD) _ 1 .

2
= pa“gtanh(kD)
4sin® (kD) 4

Averaged over a wave period
<PE>=<KkE> Equipartition of wave energy between potential and kinetic like in the

oscillator problem. m is a linear oscillator!

2
And < Ega >=< KE>+< PE>= pga

If we now calculate the energy flux vector and average it over one wave period we get:

0
<Efiyx >=< [ (up)dz>=

2
= lpgaz(m—coth(kD) c P+L}
2 gK 2 sinh(2kD)



160 1 kD
But ¢g=—=¢C {—+_—J
ok 2 sinh(kD)

Thus the period average of the energy equation is:
ﬁ< E>+Ve[¢;<E>]=0
ot “H LG
Thus we have the important result that the energy in the wave propagates with the group

velocity. If the medium is homogeneous, Cq = Z—EQE [) only and we can write

§<E>+690VH <E>=0

For an observer moving horizontally with the group velocity the energy averaged over
one phase of the wave is constant.

Dispersion relationship for waves moving on a current

Suppose | have a wave encountering a current U(x,y), the dispersion relationship is

modified by the Doppler shift becoming

o= Kk(x,y)eU(x,y)+® Where o=./gktanh(lk))D is the intrinsic frequency

Consider in fact the 1-D example

U= U(x) only. Then o= kU+wm.
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