
4.  Energy equation for surface gravity waves 

Equations of Motion 
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or rate of change (kinetic + potential energy) + divergence (energy flux) = 0 

 

If we integrate from z = -D to z = η, we obtain the kinetic and potential energy and 

energy flux per unit horizontal area: 
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Figure 1.



∂or   
∂t

[KE + PE]+ ∇ •H Eflux = 0 

          Rate of change = horizontal divergence of wave energy flux 

Bar denotes the quantities per unit horizontal area 

Notice: 

1) In the expression for the integrated potential density: 

1
2

ρg(η2 − D2) we have neglected the term proportional to D2 as an irrelevant 

∂D2
constant and 

∂t
= 0. 

2) In the integral for the kinetic energy we can integrate only to z = 0.  In fact we are 

calculating energy to second order in the wave amplitude.  To do this, for PE, we 

must integrate to η to obtain η2(≡ a2).  In the KE, the integral to η would include 

a correction of 0(u2η)≡o(a3), hence negligible.  Let us now consider specifically 

the surface gravity wave field in one horizontal dimension (x,z,t): 

η = a  cos(kx − ωt)      ω2 = gk  tanh(kD)  

aw φ =
k  sinh(kD)

cosh k(z + D)cos(kx − ωt) 

ρω2a p = −ρgz +
k  sinh(kD)

cosh k(z + D)cos(kx − ωt)  

 

aω u =
sinh(kD)

cosh k(z + D)cos(kx − ωt) 

aω w =
sinh(kD)

sinh k(z + D)sin(kx − ωt) 
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 PE =
1
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ρga2 cos2(kx − ωt)  

 

 KE = +
ρ(u2 + w2)
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Let us now average both quantities over a wave period, indicated by <  > 

< PE >=
1
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< kE >= ρa2ω2 1
4−D
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cosh2k(z + D)
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=   

= ρa2gtanh(kD) sinh(kD)cosh(kD)
4sin2(kD)

=
1
4
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Averaged over a wave period 

<PE>=<kE> Equipartition of wave energy between potential and kinetic like in the 

oscillator problem.  η is a linear oscillator! 

And < Etotal >=< KE > + < PE >=
ρga2
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If we now calculate the energy flux vector and average it over one wave period we get: 

< Eflux >=< (up)dz >=
−D
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But   cg =
∂ω
∂k

= c 1
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+
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Thus the period average of the energy equation is: 

  
∂
∂t

< E > +∇H •[
G 
c g < E >] = 0 

Thus we have the important result that the energy in the wave propagates with the group 

velocity.  If the medium is homogeneous, 
  
G 
c g =

∂ω
∂
G 
k 

(|
G 
k |)  only and we can write 

  
∂
∂t

< E > +
G 
c g • ∇H < E >= 0 

For an observer moving horizontally with the group velocity the energy averaged over 

one phase of the wave is constant. 

Dispersion relationship for waves moving on a current 

Suppose I have a wave encountering a current   
G
U (x,y), the dispersion relationship is 

modified by the Doppler shift becoming 

  σ =
G
k (x,y)•

G
U (x,y)+ω      where  ω = gk tanh(1k))D   is the intrinsic frequency 

Consider in fact the 1-D example 

  only.  Then σU = U(x) = kU+ω. 
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