
9.  The oceanic waveguide – normal modes of a stratified, rotating fluid 
 

 So far we have considered internal gravity waves in an unbounded domain.  We 

now consider the fluid bounded by a flat bottom at z = -D and a free surface η around the 

rest position z = 0. 

 We now need boundary conditions at z = -D and z =  η while the equations of 

motion in the interior remain the same leading to the final master equation in the 

Boussinesq approximation 
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At z =  -D  w=o   simple bottom b.c. 

At z = η 

  w = ∂η
∂t

 linearized kinematic b,c 

  p(x,y,η) = o  unforced waves 

Let us expand p around z = o as we have small (linear) motions 

p(x,y,η) = p(x,y,o) +
∂p
∂z

|z=o η  

In the momentum equations we assumed a basic state (ρo,po) for which  
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ρtotal = ρo+ρ; ptotal = po+p and ∂po
∂z

= −ρog.  Then the basic state cancels out in the third  

momentum equations which gives  

∂p
∂z

= −ρo
∂w
∂t

− ρg  

However in the surface boundary condition we have 

p = ptotal = po(z)+p.   

So  
∂ptotal

∂z
= ∂po

∂z
+ ∂p

∂z
  where p is the perturbation pressure.  Then: 

   
∂p
∂z

= −ρg−ρo
∂w
∂t

 

 

and    ∂ptotal
∂z

= −(ρo + ρ)g − ρo
∂w
∂t

 

The first term in the expansion is ∂p
∂z

|z=o η = o(a2)  

If we consider the terms ρg,ρo
∂w
∂t

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  we obtain terms o(a2)  

(gρη; ρo
∂w
∂t

η) = o(a2)  

Therefore, to be consistent in the linearization, we keep only (-ρog) 

p(x,y,η) = p(x,y,o)-ρogη = o   at z = o 

Now combine  p(x,y,o) = ρog η 

      at z = o 

   ∂η
∂t

= w 

∂
∂t

p(x,y,o) = ρogw    at   z = o 

Take the horizontal Laplacian of the above to eliminate the perturbation pressure. 
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∂
∂t

∇H
2 p = ρog∇H

2 w   at   z = o 

But from Eq. III of the unbounded rotation case 
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            everywhere hence also at z = 0 
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∂w
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2 w      at z =o 

Therefore, in terms of w, we have 

∂2

∂t2 + f 2
⎛ 

⎝ 
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⎟ ⎟ 

∂w
∂z

− g∇H
2 w = o     at z =o 

∂2

∂t2 ∇2w + f 2 ∂2w
∂z2 + N2∇H

2 w = o   in the interior 

w = o  at  z = -D 

Let us restrict ourselves to N2 = constant and orient the x-axis in the direction of KH.  So 

we look for a solution of the form 

 w = W(z)ei(kx-ωt)

The problem becomes: 

 (ω2-f2)Wz – gk2W=0   at z = o 

 Wzz + k2 N2 − ω2

ω2 − f 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ W = o    in the interior 

 W = o   at z = -D 

Consider the two quantities: 
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S2 = ω2-f2     R2 =
N2 − ω2

ω2 − f 2  

For the realistic case N2>f2, we have the following cases to consider 
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Case C 

 S2 = ω2-f2<o      S  1
2 = f 2 − ω2 > 0

      Define: 

 R2 =
N2 − ω2

ω2 − f 2      R1
2 =

N2 − ω2

f 2 − ω2  
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The problem becomes: 

 S2
1Wz + gk2W = 0     at  z = o 

 Wzz – k2 R2
1 W=o   interior 

 W=o  at  z = -D 

The solution to the interior problem is W = e±kR (z+α)1 .  We can consider hyperbolic sines 

and cosines and the solution which satisfies the bottom b.c. is 

 W = sinh[kR1(z+D)] 

So w = ei(kx-ωt)  sinh[kR1(z+D)] 

Substituting into the surface b.c. we obtain the dispersion relation: 

 

 

 

 

Figure by MIT OpenCourseWare.



 S kR1
2

1cosh(kR1D) + gk2sinh(kR1D) = 0 

S1
2R1
gk

=
R1(f 2 − ω2)

gk
= −tanh(kR1D) 

We can solve the problem graphically 
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LHS = Left hand side
RHS = Righ hand side
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 No wave exists as solution. 

Case A 

 S2 = ω2 – f2 > 0 
 

 R2 N2 − ω2
 = 

ω2 − f 2
ω2

< 0  Again define   R2 − N2
1 =

ω2 − f 2 > 0 

  
Then the problem is: 

 (ω2-f2)Wz-gk2W = 0   at   z=o 

Figure by MIT OpenCourseWare.



 

   interior Wzz − k2R1W = 0

 W= o  at  z=-D 

Like in case C, the solution that satisfies the bottom boundary condition is: 

W = sinh[kR1(z+D)]   and w = ei(kx-ωt)sinh[kR1(z+D)] 

But now the dispersion relationship is 

(ω2-f2)kR1-cosh[kR1D]-gksinh[kR1D] = 0 

R1(ω2 − f 2)
gk

=
R1S

2

gK
= + tanh(kR1D) 

Again we solve graphically 
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There are two solutions, two oppositely traveling waves.  Write the dispersion

relationship as 

 

ω2 = f 2 +
gk
R1

   tanh(kR1D). 

ωR2 − N
1 =

ω2 − f 2    if   ω >> (N,f) → R1~1 
2 2

Figure by MIT OpenCourseWare.



 

 

 
ω2~f2+gktanh(kD) 

These are surface gravity waves modified by rotation. 

Case B 

 The most interesting case corresponding to the realistic range 

f<ω<N 

Then 

 S2 = ω2-f2 > o  R2 =
N2 − ω2

ω2 − f 2 > 0 

The problem is: 

 

 (w2-f2)Wz – gk2W = 0  at z = o 

Wzz + k2R2W = 0 

W = o  at  z = -D 

The solutions will be oscillatory e±imz = e±kRz
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And the solution satisfying the bottom b.c is 

W = sin[kR(z+D)]           w = ei(kx-ωt)sin[kR(z+D)] 

The vertical wave number is 

2 2
m2 − ω

= 2R2 = k2 Nk (
ω2 − f 2

N2
) → k2(

ω2 −1)   if   f = o 

The surface b,c gives 

(ω2-f2)m cos(mD)-gk2sin(mD) = o          m=kR 

or   (ω2-f2)Rcos(kRD) - gksin(kRD) = o 

R(ω2 − f 2)
gk

= tan(kRD) 

is the dispersion relation, solved graphically. 
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0

0
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3π2ππ−π−2π k
−3π

The solution is quantized, the wave numbers are (mn, kn) with n = 0,±1,±2,±3 . . . 
 
There is an infinite, denumerable number of solutions traveling in opposite directions.

 The 0 mode has kRD<<1=>tan(kRD)≈kRD 

 R(ω2 − f 2)
gko

~koRD 

ω2 − f 2

gD
= k2

o   →   ω2 = k2
o(gD) + f 2 
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Figure by MIT OpenCourseWare.



The zero mode is a surface gravity wave in shallow water modified by rotation. 

For large k, the intersection of the two curves are very near (nπ).  So 

knRD ~ ±nπ 

and we can use this as the dispersion relation. 

Notice that if we require a rigid list as surface b,c, then the dispersion relation is 

sin(knRD) = 0 

and knRD = ±nπ becomes exact.  But we lose the surface gravity mode which requires a 

free surface η to exist.  The above, however, tells us that for the internal gravity waves 

the free surface acts as if it were rigid, and the eigensolutions are those which can be 

found imposing w = 0 at z = 0.  For the internal modes, knRD ~ ±nπ gives 

knD(N2 − ω2

ω2 − f 2 )1/ 2 ~ ± nπ  

Hence 

(ω2 − f 2)( nπ
knD

)2 ~ (N2 − ω2)  

ω2( nπ
knD

)2 + ω2 = N2 + f 2( nπ
knD

)2  

 

9 

n
ω2 π[1+ (

knD
n)]2 = N2 + f 2 π(

knD
)2     

 

So, for every kn, 



From the previous version of the dispersion relationship 

knD(N2-ω2)1/2 = nπ(ω2-f2)1/2 = 0 

ω =10f is the lower limit, and kn = 0. 

For all curves, if kn -> ∞   ω -> N   

N is the upper limit for ω and the curves reach it asymptotically.   

The two limiting points are those when 

 cg =
∂ω
∂k

= 0 

Consider the lowest mode n = 1. 
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2 (gD) + f0
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k

π From the dispersion relation k1 =
RD

 

πIf w = w o cos(k1x − ωt)sin[
D

(z + D)]    (real part)

 

 

Figure by MIT OpenCourseWare.



From ux + wz = 0 

u = −Rw o sin(k1x − ωt)cos[ π
D

(z + D)] 

 

 

z

u

u > 0 at z = 0
because cos π = -1

u > 0 at z = -D
because cos 0 = 1

Rw0
0

-D
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πConsider a snapshot of the wave at time t* as a function of   xk1x − ωt* =
RD

 

− ωt * . 

 

Figure by MIT OpenCourseWare.
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At ( πx
RD

− ωt*) = 0   u = o   w = w o sin[ π
D

(z + D)] > o 

 

At ( πx
RD

− ωt*) =
π
2

  u = −Rw o cos[ π
D

(z + D)] > o  at  z − o
< o  at  z = −D; w = o  

 

At ( πx
RD

− ωt*) = π   u = o;  w = −w o sin[ π
D

(z + D)] < o  

 

At ( πx
RD

− ωt*) =
3
2

π   u = +Rw o cos[ π
D

(z + D)] < o  at  z = o
> o  at  z = −D; w = o 
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The particle motions consist of a series of convergences under the crests (downwelling) 

and divergences under the troughs (upwelling) of the travelling wave -> system of 

CELLS. 
 
 
Variable N2(z) 

Figure by MIT OpenCourseWare.



 The more realistic situation is the one sketched in the figure - then 

R2(z) =
N2(z) − ω2

ω2 − f 2  

We again seek a solution of the form 

w = ei(kx-ωt)  W)z) 

and the problem is the same formally: 

 (ω2-f2)Wz – gk2W= 0   at z=o 

 Wzz + K2R2(z)W = o  interior 

 W = o  at z = -D 

If R2(z)>o, then the solution is a traveling wave eimz

If R2(z)<o, the solution is an evanescent mode e-mz

For a wave traveling in x we have the following situation, supposing the R2(z) 

profile is as in the sketch. 
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Figure by MIT OpenCourseWare.
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Figure by MIT OpenCourseWare.



 

 

The figures on the left of the figure are essentially Wj. The second figure is essentially the form of the solution
in the long wave limit, and the last figure is the shape of the pressure or horizontal velocity in each mode, really
the derivative of the function W. Note, as expected, the n = 1 mode has no zeros for W (just like sin π z / D),
while the second mode has a single zero (like sin 2π z / D). However, the location of the zero and maxima differ
from the constant N case. Note too that at great depth where N is small, the eigenfunctions are not oscillatory in
agreement with out qualitative discussion of the governing equation.
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