
11.  Laplace tidal equations on the sphere 

Thin layer of fluid D/L<<1     linearized 

 

 

 

 

 

 

 

 

φ = longitude (average) of P,  θ = latitude;  u = east-west velocity 

R = earth’s radius     v = south-north velocity 

       w = radial velocity upward 
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∂z

= 0      →  adiabatic  motion  

 ∂u
∂φ

+
∂

∂θ
(vcosθ) + Rcosθ

∂w
∂z

= 0       

1 

θ

ϕ

z v

Ω

u
p

Figure by MIT OpenCourseWare.



 

The equations have been linearized and, as usual, we have split 

 ρtotal = ρo(z) + ρ(φ,θ,z,t) 

       with dρo
dz

= −ρog 

 ρtotal = po(z) + p(φ,θ,z,t) 

The third momentum equation contains the centrifugal force which can be written as the 

gradient of the centrifugal potential 

 ∇(1
2

Ω2 cos2 θ  r2)  r = distance from center of the earth 

 ∂
∂r

=
∂
∂z

 

which can be combined with the gravitational potential:  

∇(gr +
1
2

Ω2 cos2 θ  r2) = ∇g'  →  ellipsoidal  sufaces 

g’ varies by about 0.3% from the pole to the equator.  In this way we can eliminate the 

centrifugal component which is  very small and we keep spherical coordinates because 

the variation in g’ is very small. 

More important are the two components of the Earth’s rotation, 2Ω cosθ, tangent to the 

earth’s surface. 

In the first momentum equation 

 W
U

=
D
L

<<1  from continuity 

Thus, on the basis of scale analysis we can ignore the tangent component of the Earth’s 

rotation in the first momentum equation. 
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Then energy arguments make it necessary to ignore the tangent component also in the 

third momentum equation.  In fact if we keep it and we form the energy equation, we find 

the Coriolis force doing work, which is impossible. 

 Neglecting 2Ωcosθ w and 2Ωcosθ u is often called the traditional approximation.  

We want, however to justify it again through scale analysis.  The scale for the pressure 

field is determined by the geostrophic balance (second momentum eq. as the 2 terms are 

both 0(1). 

P* = ρo2UL 

then  ∂P *
∂z

= 0(ρo2 ΩUL
D

) 

 

Then in the third momentum equation: 

ρo2Ωucosθ
Pz

= 0(D
L

) << 1 

And we can ignore the tangent component of the Earth’s rotation also in the third 

momentum, eq. 

Then 

 ut − 2Ωsinθv = −
1

ρoR cosθ
pφ  

vt + 2Ωsinθu = −
1

ρoR
pθ  

0 = -pz – gρ -> hydrostatic 

uφ + (vcosθ)θ + Rcosθ wz = 0 

ρt + w dρo
dz

= 0 
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Where in the third momentum equation we have neglected the vertical acceleration as for 

large scale motions |wt|<<g. 

As already done, we can write the adiabatic equation as 

 ρt − w ρoN2

g
= 0       with   N2 =

−g
ρo

dρo
dz

 

 gρ = -pz

combining the two we eliminate ρ  gρt = wρoN2 = -pzt

 pzt + ρoN2 w = 0  knowing pz, we know ρ 

So now we have 4 equations in (u,v,w, p) 

 ut − 2Ωsinθv = −
1

ρoR cosθ
Pφ  

 vt + 2Ωsinθu = −
1

ρoR
Pφ  

 uφ + (vcosθ)θ  + Rcosθ wz = 0 

 pzt + ρoN2w = 0 

We consider a flat bottom only z = -D, because in this case we can make a separation of 

variables into a function of z and one of (φ , θ): 

 u
v

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ = U(φ,θ,t)

V(φ,θ,t)
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ F(z)   same vertical dependence for (u,v) as they  

w = W(φ,θ,t) G(z)   have similar structure 

 P
ρo

= gP(φ,θ,t)F(z)   --> needed from geostrophic balance 

  (U is not a velocity scale now, is a variable!) 

Substituting into the z horizontal momentum eqn., F(z) drops out: 
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 Vt – fV = −
g

Renθ
Pφ 

     f = 2Ωsinθ 

 Vt + fV = −
g
R

Pθ 

The continuity eq. is more complicated 

Uφ

R cosθ
+

(Vcos)θ
Rcosθ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ F(z) + WGz = 0 

or 

1
W

Uφ

R cosθ
+

(Vcosθ)θ
Rcosθ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = −

Gz
F

= −
1
h

    separations constant 

 independent of z       dependent only on z 

1
h

= dimensions  of  depth =
1
F

dG
dz

     called “equivalent depth”  

Then the horizontal structure equation for continuity is: 

Uφ

Rcosθ
+

Vcosθ( )φ
Rcosθ

+
W
h

= 0 

The adiabatic equation with the separation of variables becomes 

 gPtFz(z) + N2WG(z) = 0 

or 

 Pt + W N2

g
G
Fz

= 0 

But from  

 Gz
F

=
1
h

 →  Gzz =
Fz
h

 ⇒  Fz = hbzz 

and we have 
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 Pt + W G
Gzz

N2

gh
= 0 

or 

 
Pt
W

    =     − G
Gzz

N2

gh
                  = arbitrary  constant  

Notice that while before the separation constant h had the dimensions of a depth now 

G
Gzz

−
g

ρo

dρo
dz

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1
gh

= 0(λ2 • 1
λ2 ) = dimensionless 

The separation constant is dimensionless and can be arbitrarily chosen.  Choose 

Pt
W

=1   →  Pt = W    adiabatic  equation 

the 

−
G

Gzz

N2

gh
=1   →    Gzz +

N2

gh
G = 0 

Rewrite all equations: 

1.  Ut − fV = −
g

R cosθ
Pφ  

2. Vt + fU = −
g
R

Pθ  

3.  
Uφ

Rcosθ
+

(Vcosθ)θ
Rcosθ

+
W
h

= 0    Laplace’s tidal equations:  

      The equations for the horizontal structure 
 
4.  Pt = W 

5.  Gzz +
N2

gh
G = 0           F = hGz 
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Notice that the vertical dependence is contained only in the last equation which with the 

appropriate boundary conditions is an eigenvalue problem in which hn
−1 is the eigenvalue.  

Now we need to specify the boundary condition.  At z = -D   w = 0   => G(z) ≡ 0      

At the free surface η the kinematic condition w =
∂η
∂t

 gives WG(η) = ∂η /∂t 

Ptotal = patm  ≡  0      ptotal = po(z) + p   at z = η 

ptotal
ρo

=
po(η)

ρo
+ gPF(η)  expand  around  z = o  

 
                        
≈

po(o)
ρo

+
1

ρo

dpo
dz

|z=o η  +  ...gPF(o) = 0 

 gPF(0) = gη 

∂
∂t

:      g ∂η
∂t

= gPtF(0)    or  

 gWG(0) = gPtF(0)     at z = 0 

But from 4, adiabatic equation, Pt = W 

Therefore, 

 G(0) = F(0) = hGz(0)     from F = hGz

or Gz −
g
h

= 0    at    z = o 

So, finally, the eigenvalue problem for G is 

 Gzz +
N2

gh
G = 0  Vertical structure equation 

 G = 0   at   z = -D   

 Gz −
G
h

= 0    at   z = 0 
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Notice that there is an infinite number of horizontal structure equations, each set being 

identical except that instead of the total water depth -D, each system has an equivalent 

depth hn corresponding to the n-eigenvalue of the problem. 

Generally, the problem must be solved numerically.  Let us examine the simplest case N2 

= constant.  Notice that, if we had kept ∂w
∂t

 in the third momentum eq. and assumed a 

time-dependent e-ιωt for all the functions, we would have obtained the following 

eigenvalue problem: 

 Gzz +
N2 − ω2

gh
G = o 

 G = o   at   z = -D 

 Gz −
1
h

G = o    at    z = o 

For N2 = constant a solution G(z) satisfying the bottom boundary condition at z = -D is 

 

G = A sin[m(z+D)]   m2 =
N2

gh
  the wavenumber, quantized 

 
The eigenvalue relation for h is obtained from the surface boundary condition and gives 

 tan(mD) = mh =
N2

gm
    Infinite number of denumerable 

solutions 

 

 

 

 

8 



 

 

 

RHS

RHS

m

 

Write the dispersion relationships as: 

 tan(mD) =
N2D

g

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
mD

 

Notice that N2D
g

⎡ 

⎣ 
⎢ 
⎢ 

= −
D
ρo

dρo
dz

~Δρo
ρo

<<1
⎤ 

⎦ 
⎥  

Then we can consider 2 limits  

mD = 0(1) or large m.    Then RHS of above  ≈ 0 (<<1) and the solutions are  

tan(mD) = 0 

 mD = nπ     n = 1,2,3     and m =
nπ
D

 

As m2 =
N2

gh
 the equivalent depth for mode n is 

ghn =
N2D
n2π2  

For this mode the horizontal equations will have a long wave-gravity wave speed 

 cn = ghn  << gD  

These speeds are the long wave speeds for internal gravity modes, much slower than the 

phase speed gD  .   
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The model structures for each n are simply 

Gn = sin nπ(z + D)
D

⎤ 
⎦ 

⎡
⎥ 

 

⎣ ⎢  

Fn =cos nπ(z + D)
D

⎤ 
⎦ 

⎡
⎥ 

 

⎣ ⎢   Baroclinic modes 

Lowest mode 

Suppose now that  mD->o, very small m, very large λz. 

Then  tan(mD)≈mD = N2

gm
  -> m2 =

N2

gD
 

But m2 =
N2

gh
 -> ho = D  total depth 

This is the lowest mode, the barotropic one 

Then mo =
N2

gD
  mo -> o 

 Fo =cos[mo(z+D)] is almost z-independent 

Because of the possibility of variable separation, we can simply study the wave solutions 

of the horizontal structure equations, remembering that for each solution there is a 

vertical structure function associated. 

Combining 3 and 4, we can finally write the Laplace tidal equations as 

 Ut –fV = −
g

R cosθ
Pφ  

 Vt + fU = −
g
R

Pθ   I 

 Pt + h
Vφ

Rcosθ

⎡ 

⎣ 
⎢ +

(Vcosθ)θ
Rcosθ

⎤ 
⎦ ⎥ = 0 
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