Boussinesq Approximation

There are several versions of the Boussinesq approximation around; the general pur-
pose is to isolate the important effects of density — the buoyancy — and eliminate the
less important ones (altering horizontal pressure forces, sound waves). We begin with the
full Euler equations
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and define a hydrostatic state
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Then our momentum equations become
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Expanding the first term on the r.h.s. of the z momentum equation allows us to rewrite
the momentum equations as
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The mass equation becomes
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The thermodynamic equation, divided by p, becomes
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upon substituting the definitions for the deviations in pressure and density.

Standard Boussinesq Form:
The usual form of the approximation is for a liquid. In the momentum equations it
requires o << 1 and N? << gH, where

is the Brunt—Vaisala frequency. The momentum equations become

D ~ .
Eu-}—kau:—V(p—kga

and the mass equation simplifies to
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In the thermodynamic equation, we must assume ¢ << c2o (which is equivalent to gH <<
c? if the pressure and density deviations are related hydrostatically). We then find
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(dropping the o1 compared to pr and ignoring the deviations in ¢2 — all consistent with

the assumptions above).
If we now define a buoyancy variable by

b:/ N? —go
o

we get the usual form of the Boussinesq model:

and redefine the dynamic pressure
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You will often see agT used in place of b in the above equations, where o = —pr/p is the
thermal expansion coefficient.

Gas:

For a gas, the equations are a little different. They are much easier and more accurately
derived in pressure coordinates, but it is possible to look at them in ordinary coordinates
as well. In this case, it is advisable to treat the thermodynamic equation directly, using
the perfect gas law: 0
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Substituting the expressions for the deviations gives
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Again 0 << 1 and likewise ¢ is small, so that we can simplify to
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suggesting a slightly different definition for buoyancy:
b= / N2 —go+ 22y
Yp

including somewhat more of the compressibility. The thermodynamic equation then is
identical to that above. In the mass equation, however, we only drop the ¢ terms and find
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The momentum equations are then simplified by dropping the ¢ terms and substituting
the definition of buoyancy to find
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The last term is then dropped (with less justification). Pressure coordinates allow incor-
poration of that term into the vertical derivatives.



