Change of Coordinates (non—orthogonal)

Different vertical coordinates

Suppose we have a property S(z,y, z,t) and want to express it as S(z,y,&,t) in terms
of a different vertical coordinate £ = £(z,y, 2,t) — e.g., pressure, so that we look at the
temperature vs. latitude and longitude on the 500mb surface or the 750mb surface. What

is the relationship between derivatives like the rate of change with = along a horizontal line
(@)z and the rate of change with horizontal distance along a constant & surface (%) g?
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Let us look at this graphically:
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The derivatives in question are
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We can relate these two by using the vertical changes
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Using this to eliminate S5 from the rate of change along a horizontal surface gives
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Likewise
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Thus, to change coordinates we replace 22 by
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with similar forms for % and %7; the vertical replacement is
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There is a fairly straightforward mathematical procedure for changing coordinates
from one system to another, even if the second is not orthogonal. Suppose we have a
function S(x) and wish to express it and its derivatives as functions of the new coordinates
&. We could use the chain rule to find

General coordinate change
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But this may not be adequate, for the following reason. We wish to have coefficients in the
final equations expressed as functions of the new coordinates; however, quantities such as
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are more likely to be known as functions of x.

To accomplish the goal of having all terms expressed in the new coordinates, we begin
with the opposite form
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and assume that the gig’f terms are functions of £&. We can express derivatives in the old

coordinate system in terms of derivates in the new system by inverting the transformation
matrix:
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In terms of the Jacobian matrix
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Example

If we take polar coordinates as a specific case, we have the relationship between the
old and new coordinates

z =rcosf
y =rsinf
z=12

So that the transformation matrix matrix T'ij = g—gl in (2) is
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T=| —rsinf rcosf 0
0 0 1
The inverse is
cosf — % sind 0
T ! = sin6 %0059 0
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so that .
Y = cos b Y, — ;sin@ (e
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using subscript notation for derivatives.



Change in vertical coordinate
If we switch from z, y, z to 2/, 3/, £, the transformation matrix is
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and its inverse is

Thus we can replace horizontal gradients
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vertical derivatives
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and time derivatives
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in our original equations.
First, we note that the material derivative becomes
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and we can define the “vertical” velocity w as
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so that the material derivative becomes
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With this definition, we note that w = D%z as we might expect.



Transformed equations

The horizontal momentum equations become
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with ¢ = gz being the geopotential; the hydrostatic balance is
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while the conservation of mass gives
1D 1 1 0,D
V-u— — \Y =0
por? TV U eVt e (5
implying
LD + LD +V-.u+ 0
-— . Di”
pDt’ " 2 Dt ae”
o 1 D 9
V. —w=0 3
pthpg—i_ u+3£w (e.3)
Finally, the thermodynamic equation becomes
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in general. The potential vorticity (with » being the entropy) is

q= —p%(vg x u+ fk) - Var (e5)

with the V3 notation indicating the vertical derivatives are included.



Vertical coordinate function of pressure

When the vertical coordinate is a function of pressure & = £(p) or p = p(£), we can
define pe = —gp.(€) and simplify the equations to
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The last equation can also be written
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with the stratification parameter S
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defined in terms of the Brunt-Vaisala frequency
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The PV is .
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We shall use eqns. pl-p4 as our basic set.
The boundary conditions are a bit tricky; if the bottom is at z = h(x,y), we get an
implicit equation for the surface pressure &,(z, y,t):
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We also have the kinematic condition
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Together, these two imply

w= D2t£S at £ =&, (b.2)



Linearized equations

The wave equations for this system are
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If we make the particular choice of p. = p, so that £ is just the height in the resting
atmosphere, we have b = g, S = N2, and the equations look like the Boussinesq form
except for the p factors in the stretching term. We can separate variables
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giving again the vertical structure eigenvalue equation
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The lower boundary condition gives the surface pressure
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Often, however, the simpler condition w =0 = %—? = 0 is used.



Isothermal atmosphere

One case that can be worked out completely is the isothermal basic state. Using the
gas law gives p = pRT'; the hydrostatic equation then gives

p=poexp(—z/Hs) , p=poexp(-z/Hs) , Hs=RT/g , po=pogH,
— the density decays exponentially with a scale height H;. We can just choose ¢ =
H,In(po/p) so that it’s the same as height. The associated density p. = p as before. When
we calculate the Brunt-Vaisala frequency, we get
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and discover that it is constant. The vertical structure equation becomes
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Therefore F' will have exponential solutions
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If we start with the case when the argument of the square root is positive, we must eliminate
the large root, since it has an energy density pu® ~ exp([2a—1]¢/H) which grows towards
infinity. Therefore we can only accept the negative sign, giving
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The lower boundary condition gives (for w = 0)
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which will be well-behaved as long as ¢, > 2R (for the atmosphere ¢, ¢,, R = 718, 1005, 287.1 J/kg/K°
(Tsonis, An Introduction to Atmospheric Thermodynamics) so that this condition is fine.

The equivalent depth is 40% larger than the scale height. Over one scale height, F

grows by a factor of exp(R/cp) = 1.33 while the kinetic energy density decreases by

exp(Q% — 1) = 0.65. THis is the equivalent barotropic mode.

Are there any other modes? The derivation above makes it clear that this is the
only mode with H, > 4(R/c,)Hs; = 1.14H,. What about the modes with complex o
which have energies remaining order one at infinity? The lower boundary condition clearly
requires both the ay and a_ modes; however, the latter will have downward energy flux.
To maintain such a mode, we require a reflecting surface or an energy source high in the
atmosphere. This will not happen for a resting atmosphere; therefore, the only mode
available is the equivalent barotropic mode.



Thermodynamics

For an ideal gas, we can simplify the thermodynamics using n = ¢, In 0

with the potential temperature being
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Thus, the buoyancy becomes

b= gP (£> o =Gl (».9)

With a little work, you can substitute (p.8) into (p.4), using ¢ = yp/p to show that (p.7)
holds. The Brunt-Vaisala frequency is
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Quasigeostrophic form
We start with the momentum equations

A A 1 A
%u-i—(fk-l-vgxu) ><(u+wk):—V(go+§u-u)+bk

take the curl and look at the vertical component
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The QG form of this is
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For the thermodynamics, we recognize that
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so that
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Combining these gives
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For the atmospheric case, we can use the potential temperature equation times G(&) to
write

s=mo%ma

and show, from the definition of G = gp./pf, that
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as before.
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In this chart, pp and pg are reference values; the scale height is related to these two by
gH = RTy = Rby = po/po-
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Summarizing

In the atmosphere, we would usually use pressure coordinates
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but will find the log form convenient if we work with an isothermal stratification so that
p = pc = poexp(—¢/H)
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For the ocean, we usually use (po — p)/pog and ignore the difference between S and
N2
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