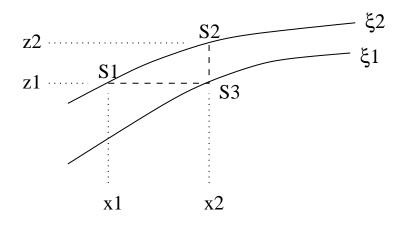
Change of Coordinates (non-orthogonal)

Different vertical coordinates

Suppose we have a property S(x,y,z,t) and want to express it as $S(x,y,\xi,t)$ in terms of a different vertical coordinate $\xi=\xi(x,y,z,t)$ — e.g., pressure, so that we look at the temperature vs. latitude and longitude on the 500mb surface or the 750mb surface. What is the relationship between derivatives like the rate of change with x along a horizontal line $\left(\frac{\partial S}{\partial x}\right)_z$ and the rate of change with horizontal distance along a constant ξ surface $\left(\frac{\partial S}{\partial x}\right)_{\xi}$? Let us look at this graphically:



The derivatives in question are

$$\left(\frac{\partial S}{\partial x}\right)_z = \frac{S_3 - S_1}{x_2 - x_1} \quad , \quad \left(\frac{\partial S}{\partial x}\right)_{\xi} = \frac{S_2 - S_1}{x_2 - x_1}$$

We can relate these two by using the vertical changes

$$S_2 - S_3 = \left(\frac{\partial S}{\partial z}\right)_x (z_2 - z_1) = \left(\frac{\partial S}{\partial \xi}\right)_x (\xi_2 - \xi_1)$$

Using this to eliminate S_3 from the rate of change along a horizontal surface gives

$$\begin{split} \left(\frac{\partial S}{\partial x}\right)_z &= \frac{S_2 - S_1}{x_2 - x_1} - \left(\frac{\partial S}{\partial \xi}\right)_x \frac{\xi_2 - \xi_1}{x_2 - x_1} \\ &= \left(\frac{\partial S}{\partial x}\right)_{\xi} - \left(\frac{\partial S}{\partial \xi}\right)_x \frac{z_2 - z_1}{x_2 - x_1} \frac{\xi_2 - \xi_1}{z_2 - z_1} \\ &= \left(\frac{\partial S}{\partial x}\right)_{\xi} - \left(\frac{\partial S}{\partial \xi}\right)_x \left(\frac{\partial z}{\partial x}\right)_{\xi} / \left(\frac{\partial z}{\partial \xi}\right)_x \end{split}$$

Likewise

$$\left(\frac{\partial S}{\partial z}\right)_x = \left(\frac{\partial S}{\partial \xi}\right)_x / \left(\frac{\partial z}{\partial \xi}\right)_x$$

Thus, to change coordinates we replace $\frac{\partial S}{\partial x}$ by

$$\left(\frac{\partial S}{\partial x}\right)_z \to \left(\frac{\partial S}{\partial x}\right)_{\xi} - \left(\frac{\partial S}{\partial \xi}\right)_x \frac{\left(\frac{\partial z}{\partial x}\right)_{\xi}}{\left(\frac{\partial z}{\partial \xi}\right)_x}$$

with similar forms for $\frac{\partial S}{\partial y}$ and $\frac{\partial S}{\partial t}$; the vertical replacement is

$$\left(\frac{\partial S}{\partial z}\right)_x \to \frac{\left(\frac{\partial S}{\partial \xi}\right)_x}{\left(\frac{\partial z}{\partial \xi}\right)_x}$$

General coordinate change

There is a fairly straightforward mathematical procedure for changing coordinates from one system to another, even if the second is not orthogonal. Suppose we have a function $S(\mathbf{x})$ and wish to express it and its derivatives as functions of the new coordinates $\boldsymbol{\xi}$. We could use the chain rule to find

$$\frac{\partial S}{\partial x_i} = \frac{\partial \xi_j}{\partial x_i} \frac{\partial S}{\partial \xi_j} \tag{1}$$

But this may not be adequate, for the following reason. We wish to have coefficients in the final equations expressed as functions of the new coordinates; however, quantities such as

$$\frac{\partial \xi_1}{\partial x_3}$$

are more likely to be known as functions of \mathbf{x} .

To accomplish the goal of having all terms expressed in the new coordinates, we begin with the opposite form

$$\frac{\partial S}{\partial \xi_i} = \frac{\partial x_j}{\partial \xi_i} \frac{\partial S}{\partial x_j} \quad or \quad \nabla_x S = \mathbf{T} \nabla_\xi S \tag{2}$$

and assume that the $\frac{\partial x_j}{\partial \xi_i}$ terms are functions of ξ . We can express derivatives in the old coordinate system in terms of derivates in the new system by inverting the transformation matrix:

$$\frac{\partial S}{\partial x_i} = \left[\frac{\partial x_i}{\partial \xi_j}\right]^{-1} \frac{\partial S}{\partial \xi_j} \quad or \quad \nabla_{\xi} S = \mathbf{T}^{-1} \nabla_x S \tag{3}$$

In terms of the Jacobian matrix

$$\frac{\partial(A, B, C)}{\partial(\xi_1, \xi_2, \xi_3)} \equiv \det \begin{pmatrix} \frac{\partial A}{\partial \xi_1} & \frac{\partial A}{\partial \xi_2} & \frac{\partial A}{\partial \xi_3} \\ \frac{\partial B}{\partial \xi_1} & \frac{\partial B}{\partial \xi_2} & \frac{\partial B}{\partial \xi_3} \\ \frac{\partial C}{\partial \xi_1} & \frac{\partial C}{\partial \xi_2} & \frac{\partial C}{\partial \xi_3} \end{pmatrix}$$

we have

$$\frac{\partial S}{\partial x_1} = \frac{\partial (S, x_2, x_3)}{\partial (x_1, x_2, x_3)} = \frac{\partial (S, x_2, x_3)}{\partial (\xi_1, \xi_2, \xi_3)} / \frac{\partial (x_1, x_2, x_3)}{\partial (\xi_1, \xi_2, \xi_3)}$$

etc.

Example

If we take polar coordinates as a specific case, we have the relationship between the old and new coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z'$$

So that the transformation matrix matrix $Tij = \frac{\partial x_j}{\partial \xi_i}$ in (2) is

$$\mathbf{T} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -r \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The inverse is

$$\mathbf{T}^{-1} = \begin{pmatrix} \cos \theta & -\frac{1}{r} \sin \theta & 0\\ \sin \theta & \frac{1}{r} \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

so that

$$\psi_x = \cos\theta \ \psi_r - \frac{1}{r} \sin\theta \ \psi_\theta$$

$$\psi_y = \sin\theta \ \psi_r + \frac{1}{r} \cos\theta \ \psi_\theta$$

$$\psi_z = \psi_{z'}$$

using subscript notation for derivatives.

Change in vertical coordinate

If we switch from x, y, z to x', y', ξ , the transformation matrix is

$$\mathbf{T} = \begin{pmatrix} 1 & 0 & \frac{\partial z}{\partial x'} \\ 0 & 1 & \frac{\partial z}{\partial y'} \\ 0 & 0 & \frac{\partial z}{\partial \xi} \end{pmatrix}$$

and its inverse is

$$\mathbf{T}^{-1} = \begin{pmatrix} 1 & 0 & -\frac{\partial z}{\partial x'} / \frac{\partial z}{\partial \xi} \\ 0 & 1 & -\frac{\partial z}{\partial y'} / \frac{\partial z}{\partial \xi} \\ 0 & 0 & 1 / \frac{\partial z}{\partial \xi} \end{pmatrix}$$

Thus we can replace horizontal gradients

$$abla \longrightarrow
abla - rac{
abla z}{z_{m{arepsilon}}} rac{\partial}{\partial m{\xi}}$$

vertical derivatives

$$\frac{\partial}{\partial z} \longrightarrow \frac{1}{z_{\mathcal{E}}} \frac{\partial}{\partial \xi}$$

and time derivatives

$$\frac{\partial}{\partial t} \longrightarrow \frac{\partial}{\partial t} - \frac{z_t}{z_{\xi}} \frac{\partial}{\partial \xi}$$

in our original equations.

First, we note that the material derivative becomes

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla + \frac{1}{z_{\mathcal{E}}} (w - z_t - \mathbf{u} \cdot \nabla z) \frac{\partial}{\partial \xi}$$

and we can define the "vertical" velocity ω as

$$\omega = rac{1}{z_{m{arepsilon}}}(w - z_t - \mathbf{u} \cdot
abla z)$$

so that the material derivative becomes

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla + \omega \frac{\partial}{\partial \xi}$$

With this definition, we note that $w = \frac{D}{Dt}z$ as we might expect.

Transformed equations

The horizontal momentum equations become

$$\frac{D}{Dt}\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u} = -\frac{1}{\rho}\nabla p - \nabla\varphi \tag{e.1}$$

with $\varphi = gz$ being the geopotential; the hydrostatic balance is

$$\frac{\partial}{\partial \xi} \varphi = -\frac{1}{\rho} \frac{\partial}{\partial \xi} p \tag{e.2a}$$

while the conservation of mass gives

$$\frac{1}{\rho} \frac{D}{Dt} \rho + \nabla \cdot \mathbf{u} - \frac{1}{z_{\xi}} \mathbf{u}_{\xi} \cdot \nabla z + \frac{1}{z_{\xi}} \frac{\partial}{\partial \xi} (\frac{D}{Dt} z) = 0$$

implying

$$\frac{1}{\rho} \frac{D}{Dt} \rho + \frac{1}{z_{\xi}} \frac{D}{Dt} z_{\xi} + \nabla \cdot \mathbf{u} + \frac{\partial}{\partial \xi} \omega$$

or

$$\frac{1}{p_{\xi}} \frac{D}{Dt} p_{\xi} + \nabla \cdot \mathbf{u} + \frac{\partial}{\partial \xi} \omega = 0 \tag{e.3}$$

Finally, the thermodynamic equation becomes

$$\frac{D}{Dt}\rho - \frac{1}{c_s^2} \frac{D}{Dt} p = 0 (e.4a)$$

in general. The potential vorticity (with η being the entropy) is

$$q = -\frac{g}{p_{\varepsilon}} (\nabla_3 \times \mathbf{u} + f\hat{\mathbf{k}}) \cdot \nabla_3 \eta \tag{e.5}$$

with the ∇_3 notation indicating the vertical derivatives are included.

Vertical coordinate function of pressure

When the vertical coordinate is a function of pressure $\xi = \xi(p)$ or $p = p(\xi)$, we can define $p_{\xi} \equiv -g \rho_c(\xi)$ and simplify the equations to

$$\frac{D}{Dt}\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u} = -\nabla\varphi \tag{p.1}$$

$$\frac{\partial}{\partial \xi} \varphi = g \frac{\rho_c}{\rho} \equiv b \tag{p.2}$$

$$\nabla \cdot \mathbf{u} + \frac{1}{\rho_c} \frac{\partial}{\partial \xi} (\rho_c \omega) = 0 \tag{p.3}$$

$$\frac{D}{Dt}\rho + \omega \frac{g\rho_c}{c_s^2} = 0 \quad or \quad \frac{D}{Dt}b + \omega \left[-g\frac{\rho_{c\xi}}{\rho} - \frac{g^2\rho_c^2}{\rho^2c_s^2} \right] = 0$$

The last equation can also be written

$$\frac{\partial}{\partial t}b + \mathbf{u} \cdot \nabla b + \omega \left[-\frac{g\rho_c\rho_\xi}{\rho^2} - \frac{g^2\rho_c^2}{\rho^2c_s^2} \right] = 0$$

or

$$\frac{\partial}{\partial t}b + \mathbf{u} \cdot \nabla b + \omega \mathcal{S} = 0 \tag{p.4}$$

with the stratification parameter \mathcal{S}

$$S = \frac{\rho_c^2}{\rho^2} N^2 = b_{\xi} - b \frac{\rho_{c\xi}}{\rho_c} - \frac{b^2}{c_c^2}$$
 (p.5a)

defined in terms of the Brunt-Väisälä frequency

$$N^{2} = -g\frac{1}{\rho}\frac{\partial}{\partial z}\rho - \frac{g^{2}}{c_{s}^{2}} = -g\frac{\rho_{\xi}}{\rho_{c}} - \frac{g^{2}}{c_{s}^{2}} = \frac{g^{2}}{b^{2}}b_{\xi} - \frac{g^{2}}{b}\frac{\rho_{c\xi}}{\rho_{c}} - \frac{g^{2}}{c_{s}^{2}}$$
 (p.5b)

The PV is

$$q = \frac{1}{\rho_c} (\nabla_3 \times \mathbf{u} + f\hat{\mathbf{k}}) \cdot \nabla_3 \eta \tag{p.6}$$

We shall use eqns. p1-p4 as our basic set.

The boundary conditions are a bit tricky; if the bottom is at z = h(x, y), we get an implicit equation for the surface pressure $\xi_s(x, y, t)$:

$$\phi(x, y, \xi_s(x, y, t), t) = gh(x, y) \tag{b.1}$$

We also have the kinematic condition

$$w\left(=\frac{D}{Dt}z\right) = \frac{D}{Dt}h \quad \Rightarrow \quad \frac{D}{Dt}(\phi - gh) = 0$$

Together, these two imply

$$\omega = \frac{D}{Dt}\xi_s \quad at \quad \xi = \xi_s \tag{b.2}$$

Linearized equations

The wave equations for this system are

$$\frac{\partial}{\partial t}\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u} = -\nabla \phi'$$

$$\frac{\partial}{\partial \xi} \phi' = b'$$

$$\nabla \cdot \mathbf{u} + \frac{1}{\rho_c} \frac{\partial}{\partial \xi} (\rho_c \omega) = 0$$

$$\frac{\partial}{\partial t} b' + \omega \overline{\mathcal{S}} = 0$$

If we make the particular choice of $\rho_c = \overline{\rho}$, so that ξ is just the height in the resting atmosphere, we have $\overline{b} = g$, $\overline{S} = \overline{N^2}$, and the equations look like the Boussinesq form except for the $\overline{\rho}$ factors in the stretching term. We can separate variables

$$\mathbf{u} \to \mathbf{u}(\mathbf{x}, t) F(z) \quad , \quad \phi' \to \phi'(\mathbf{x}, t) F(z) \quad , \quad b' \to b'(\mathbf{x}, t) \frac{\partial F}{\partial \xi} \quad , \quad \omega = -\frac{\partial \phi'}{\partial t} \frac{1}{\overline{N^2}} \frac{\partial F}{\partial \xi}$$

The mass conservation equation gives

$$\frac{\partial \phi'}{\partial t} \left[-\frac{1}{\overline{\rho}} \frac{\partial}{\partial \xi} \frac{\overline{\rho}}{\overline{N^2}} \frac{\partial}{\partial \xi} F \right] + \nabla \cdot \mathbf{u} F = 0$$

giving again the vertical structure eigenvalue equation

$$\frac{1}{\overline{\rho}}\frac{\partial}{\partial\xi}\frac{\overline{\rho}}{\overline{N^2}}\frac{\partial}{\partial\xi}F = -\frac{1}{gH_e}F$$

and the horizontal equations

$$\frac{\partial}{\partial t}\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u} = -\nabla \phi'$$
$$\frac{1}{gH_e}\frac{\partial \phi'}{\partial t} + \nabla \cdot \mathbf{u} = 0$$

The lower boundary condition gives the surface pressure

$$\frac{\partial \overline{\phi}}{\partial \xi} \xi_s + \phi'(\mathbf{x}, 0, t) \simeq 0 \quad \Rightarrow \quad \xi_s = -\frac{1}{q} \phi'(\mathbf{x}, t) F(0)$$

and its evolution

$$\frac{\partial \xi_s}{\partial t} = \omega(\mathbf{x}, 0, t) = -\frac{\partial \phi'}{\partial t} \frac{1}{\overline{N^2}} \frac{\partial F}{\partial \xi} \quad \Rightarrow \quad \frac{\partial F}{\partial \xi} = \frac{\overline{N^2}}{g} F \quad at \quad \xi = 0$$

Often, however, the simpler condition $\omega = 0 \implies \frac{\partial F}{\partial \xi} = 0$ is used.

Isothermal atmosphere

One case that can be worked out completely is the isothermal basic state. Using the gas law gives $\overline{p} = \overline{\rho}RT$; the hydrostatic equation then gives

$$\overline{p} = p_0 \exp(-z/H_s)$$
 , $\overline{\rho} = \rho_0 \exp(-z/H_s)$, $H_s = RT/g$, $p_0 = \rho_0 g H_s$

— the density decays exponentially with a scale height H_s . We can just choose $\xi = H_s \ln(p_0/p)$ so that it's the same as height. The associated density $\rho_c = \overline{\rho}$ as before. When we calculate the Brunt-Väisälä frequency, we get

$$\overline{N^2} = \frac{g}{H_s} - \frac{g^2}{c_s^2} = \frac{g}{H_s} \left[1 - \frac{c_v}{c_p} \right] = \frac{g}{H_s} \frac{R}{c_p}$$

and discover that it is constant. The vertical structure equation becomes

$$\frac{\partial^2 F}{\partial \xi^2} - \frac{1}{H_s} \frac{\partial F}{\partial \xi} = -\frac{1}{H_s H_e} \frac{R}{c_p} F$$

Therefore F will have exponential solutions

$$F = \exp(\alpha z/H_s)$$
 , $\alpha^2 - \alpha + \frac{H_s}{H_e} \frac{R}{c_p} = 0$, $\alpha = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - 4 \frac{R}{c_p} \frac{H_s}{H_e}}$

If we start with the case when the argument of the square root is positive, we must eliminate the large root, since it has an energy density $\bar{\rho}u^2 \sim \exp([2\alpha - 1]\xi/H_s)$ which grows towards infinity. Therefore we can only accept the negative sign, giving

$$F = \exp\left(\left[1 - \sqrt{1 - 4\frac{R}{c_p}\frac{H_s}{H_e}}\right] \frac{\xi}{2H_s}\right)$$

The lower boundary condition gives (for $\omega = 0$)

$$\alpha = 0 \quad \Rightarrow \quad \frac{1}{gH_e} \to 0 \quad , \quad F = 1$$

or for the full condition

$$\alpha = \frac{H_s \overline{N^2}}{g} = \frac{R}{c_p} \quad \Rightarrow \quad H_e = \frac{H_s}{1 - \frac{R}{c_p}} = \frac{c_p}{c_v} H_s \quad , \quad F = \exp(\frac{R}{c_p} \frac{\xi}{H_s})$$

which will be well-behaved as long as $c_p > 2R$ (for the atmosphere c_v , c_p , R = 718, 1005, 287.1 $J/kg/K^\circ$ (Tsonis, An Introduction to Atmospheric Thermodynamics) so that this condition is fine. The equivalent depth is 40% larger than the scale height. Over one scale height, F grows by a factor of $\exp(R/c_p) = 1.33$ while the kinetic energy density decreases by $\exp(2\frac{R}{c_p} - 1) = 0.65$. This is the equivalent barotropic mode.

Are there any other modes? The derivation above makes it clear that this is the only mode with $H_e > 4(R/c_p)H_s = 1.14H_s$. What about the modes with complex α which have energies remaining order one at infinity? The lower boundary condition clearly requires both the α_+ and α_- modes; however, the latter will have downward energy flux. To maintain such a mode, we require a reflecting surface or an energy source high in the atmosphere. This will not happen for a resting atmosphere; therefore, the only mode available is the equivalent barotropic mode.

Thermodynamics

For an ideal gas, we can simplify the thermodynamics using $\eta = c_p \ln \theta$

$$\frac{D}{Dt}\theta = 0 \tag{p.7}$$

with the potential temperature being

$$\theta = \theta_0 \frac{\rho_0}{\rho} \left(\frac{p}{p_0} \right)^{1/\gamma}$$

Thus, the buoyancy becomes

$$b = g \frac{\rho_c}{\rho_0} \left(\frac{p}{p_0}\right)^{-1/\gamma} \frac{\theta}{\theta_0} \equiv G(\xi)\theta \tag{p.8}$$

With a little work, you can substitute (p.8) into (p.4), using $c_s^2 = \gamma p/\rho$ to show that (p.7) holds. The Brunt-Väisälä frequency is

$$N^2 = g \frac{\partial}{\partial z} \ln \theta = g \frac{\rho}{\rho_c} \frac{\partial}{\partial \xi} \ln \theta \quad , \quad \mathcal{S} = g \frac{\rho_c}{\rho} \frac{\partial}{\partial \xi} \ln \theta$$

Quasigeostrophic form

We start with the momentum equations

$$\frac{\partial}{\partial t}\mathbf{u} + (f\hat{\mathbf{k}} + \nabla_3 \times \mathbf{u}) \times (\mathbf{u} + \omega \hat{\mathbf{k}}) = -\nabla(\varphi + \frac{1}{2}\mathbf{u} \cdot \mathbf{u}) + b\hat{\mathbf{k}}$$

take the curl and look at the vertical component

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla + \omega \frac{\partial}{\partial \xi}\right) (\zeta + f) = (\nabla_2 \times \mathbf{u}) \cdot \nabla_2 \omega + (\zeta + f) \frac{1}{\rho_c} \frac{\partial}{\partial \xi} \rho_c \omega$$

The QG form of this is

$$\left(\frac{\partial}{\partial t} + \mathbf{u}_g \cdot \nabla\right) (\zeta_g + f) = f \frac{1}{\rho_c} \frac{\partial}{\partial \xi} \rho_c \omega$$

with

$$\mathbf{u}_g = \hat{\mathbf{k}} \times \nabla \psi$$
 , $\zeta_g = \nabla^2 \psi$, $\psi = \varphi/f$

For the thermodynamics, we recognize that

$$\frac{\rho_c^2}{\rho^2} N^2 \simeq \frac{\rho_c^2(\xi)}{\overline{\rho}^2(\xi)} \overline{N^2}(\xi) \equiv \mathcal{S}(\xi)$$

so that

$$\left(\frac{\partial}{\partial t} + \mathbf{u}_g \cdot \nabla\right) \psi_{\xi} + \frac{\mathcal{S}}{f} \omega = 0$$

Combining these gives

$$\frac{\partial}{\partial t}Q + J(\psi, Q) = 0$$

with the QG PV being

$$Q = \nabla^2 \psi + \frac{1}{\rho_c} \frac{\partial}{\partial \xi} \frac{\rho_c f^2}{\mathcal{S}} \frac{\partial}{\partial \xi} \psi + f$$

For the atmospheric case, we can use the potential temperature equation times $G(\xi)$ to write

$$S = G(\xi) \frac{\partial}{\partial \xi} \overline{\theta}(\xi)$$

and show, from the definition of $G = g\rho_c/\rho\theta$, that

$$S = g\rho_c \frac{1}{\overline{\rho}\overline{\theta}} \overline{\theta}_{\xi} = \frac{\rho_c^2}{\overline{\rho}^2} \overline{N^2}(\xi)$$

as before.

Examples

$$\frac{\xi}{p} \qquad \rho_{c} \qquad G \qquad \mathcal{S}(\text{atm.}) \qquad \mathcal{S}(\text{oc.})$$

$$p \qquad -1/g \qquad -\frac{R}{p_{0}} \left(\frac{\xi}{p_{0}}\right)^{-1/\gamma} \qquad -\frac{1}{\overline{\rho}} \frac{\partial}{\partial \xi} \ln \overline{\theta}$$

$$(p_{0} - p)/\rho_{0}g \qquad \rho_{0} \qquad \frac{g}{\theta_{0}} (1 - \frac{\xi}{H})^{-1/\gamma} \qquad g \frac{\rho_{0}}{\overline{\rho}} \frac{\partial}{\partial \xi} \ln \overline{\theta} \qquad \frac{\rho_{0}^{2}}{\overline{\rho}^{2}} \overline{N^{2}} \simeq \overline{N}$$

$$-H \ln \frac{p}{p_{0}} \qquad \rho_{0}e^{-\xi/H} \qquad \frac{g}{\theta_{0}} \exp(-\frac{\gamma - 1}{\gamma} \frac{\xi}{H}) \qquad g \frac{\rho_{0}e^{-\xi/H}}{\overline{\rho}} \frac{\partial}{\partial \xi} \ln \overline{\theta}$$

$$\frac{H\gamma}{\gamma - 1} \left[1 - \left(\frac{p}{p_{0}}\right)^{(\gamma - 1)/\gamma}\right] \qquad \rho_{0} \left[1 - \frac{\xi}{H} \frac{\gamma - 1}{\gamma}\right]^{1/(\gamma - 1)} \qquad \frac{g}{\theta_{0}} \qquad g \frac{\rho_{0}}{\overline{\rho}} \left[1 - \frac{\xi}{H} \frac{\gamma - 1}{\gamma}\right]^{\frac{1}{(\gamma - 1)}} \frac{\partial}{\partial \xi} \ln \overline{\theta}$$

$$-\int_{p_{0}}^{p} dp' \frac{p'}{\overline{\rho}(p')g} \qquad \overline{\rho} \qquad \frac{g}{\overline{\rho}} \qquad g \frac{\partial}{\partial \xi} \ln \overline{\theta} \qquad \overline{N^{2}}$$

In this chart, p_0 and ρ_0 are reference values; the scale height is related to these two by $gH = RT_0 = R\theta_0 = p_0/\rho_0$.

Summarizing

In the atmosphere, we would usually use pressure coordinates

$$\begin{split} \frac{D}{Dt}\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u} &= -\nabla \varphi + G(\xi)\theta\hat{\mathbf{k}} \\ \nabla \cdot \mathbf{u} + \omega_p &= 0 \\ \frac{D}{Dt}\theta &= 0 \\ q &= -g(\nabla_3 \times \mathbf{u} + f\hat{\mathbf{k}}) \cdot \nabla_3 \ln \theta \\ Q &= \nabla^2 \psi + \frac{\partial}{\partial p} \frac{f^2}{\mathcal{S}} \frac{\partial}{\partial p} \psi + f \\ G &= -\frac{R}{p_0} \left(\frac{p}{p_0}\right)^{-1/\gamma} \quad , \quad \mathcal{S} &= -\frac{1}{\overline{\rho}} \frac{\partial}{\partial p} \ln \overline{\theta} \end{split}$$

but will find the log form convenient if we work with an isothermal stratification so that $\overline{\rho} = \rho_c = \rho_0 \exp(-\xi/H)$

$$\begin{split} \frac{D}{Dt}\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u} &= -\nabla \varphi + g \frac{\theta}{\overline{\theta}} \hat{\mathbf{k}} \\ \nabla \cdot \mathbf{u} + (\frac{\partial}{\partial \xi} - \frac{1}{H})\omega &= 0 \\ \frac{D}{Dt}\theta &= 0 \\ q &= \frac{1}{\overline{\rho}} (\nabla_3 \times \mathbf{u} + f\hat{\mathbf{k}}) \cdot \nabla_3 \ln \theta \\ Q &= \nabla^2 \psi + \frac{f^2}{\overline{N^2}} (\frac{\partial}{\partial \xi} - \frac{1}{H}) \frac{\partial}{\partial \xi} \psi + f \\ \overline{\rho} &= \rho_0 e^{-\xi/H} \quad , \quad \overline{N^2} &= \frac{g}{H} \frac{\gamma - 1}{\gamma} \quad , \quad \overline{\theta} &= \theta_0 e^{(\gamma - 1)\xi/\gamma H} \end{split}$$

For the ocean, we usually use $(p_0-p)/\rho_0 g$ and ignore the difference between ${\mathcal S}$ and N^2

$$\begin{split} \frac{D}{Dt}\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u} &= -\nabla \varphi + \tilde{b}\hat{\mathbf{k}} \\ \nabla \cdot \mathbf{u} + \omega_{\xi} &= 0 \\ \frac{D}{Dt}\tilde{b} &= 0 \\ q &= \frac{1}{\rho_{0}}(\nabla_{3} \times \mathbf{u} + f\hat{\mathbf{k}}) \cdot \nabla_{3}b \\ Q &= \nabla^{2}\psi + \frac{\partial}{\partial \xi}\frac{f^{2}}{\overline{N^{2}}}\frac{\partial}{\partial \xi}\psi + f \\ \tilde{b} &= b - \frac{g^{2}}{c_{2}^{2}}\xi \quad , \quad \mathcal{S} \simeq b_{\xi} - \frac{g^{2}}{c_{2}^{2}} \end{split}$$