Baroclinic Instability - Eady model

Baroclinic instability generates eddies/ waves from a geostrophically balanced, verti-
cally sheared flow. Because of the thermal wind relationship, the shear flow has horizontal
buoyancy gradients, meaning that the height of isentropes varies from place to place. Thus
potential energy is stored in the field and can be released by allowing these deviations to re-
lax, lowering some of the dense fluid that’s been raised and raising some of the lighter fluid
that’s been pushed down. We shall analyze this using the Boussinesq, quasi-geostrophic
equations.
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The basic state has a uniformly shear wind profile, w = I'z and a corresponding
buoyancy gradient b = —I'fy. We shall also ignore the 3 effect; in that case the potential

vorticity
0 b
i=c+ 15 ()

has a constant background value, § = 0. Therefore the linearized potential vorticity
equation becomes
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implies ¢ = 0. Thus the dynamics become set by the boundary conditions. When we

linearize the buoyancy equation, we get
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and apply it at a boundary where w’ = 0, we have
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Fady edge waves

Although it might seem that this system does not support Rossby waves since ? =0,
it has an analogue to the Kelvin wave supported by the boundaries. If we consider the
lower boundary only, take N2 to be constant, and look for solutions 1)’ = ¥(z) exp(1kz),
we have
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This has a solution 5
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[giving a buoyancy anomaly b’ = by exp(—kNz/f)] which propagates eastward at
¢ =Tf/kN

To understand these waves, consider the following picture of the buoyancy distribution (for
which we’ll use temperature-like terms since the buoyancy is proportional to the potential
temperature in the atmosphere, and is mostly determined by 7" in the ocean): if we have
a warm surface anomaly, the isotherms draw downwards above it. Correspondingly, the
thermal wind relationship tells us the wind becomes more anticyclonic going upwards, or,
conversely, more cyclonic going from aloft down towards the surface. Since the signal dies
out at large z, we can associate high surface temperatures with cyclonic circulation at the
surface and cold anomalies with anticyclonic flow.
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Associated with the zonal shear is a northward decrease in temperature along the
boundary; thus, the cyclonic flow will bring warmer fluid northward, increasing the tem-
perature on the eastern side of the anomaly and colder fluid southward, decreasing the
temperature to the west. Therefore the warm anomaly will shift to the east.




Cold

Warm

Warm perturbations on the upper level, by similar arguments, correspond to anticy-
clonic flows and will propagate to the west relative to the mean flow.

Instability

Now we consider Eady’s (1949) problem with two boundaries, one at z = 0 and one
at z = H. We can solve this a number of ways, but the most illuminating is perhaps to

consider changes in the buoyancy anomaly on each boundary. We can write the buoyancy
field as )
sinh K (H — z) sinh K z

b= bo(t sinh Kz
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with K = kN/f. Integrating, we get

cosh K(H — 2) cosh Kz

U =— s
o ?) KfsmhKH 1(?) Kfsinh KH

The equations for the buoyancy evolution become
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Lower level

If we arrange the anomalies as shown, the flows will reinforce each other, and the
perturbations can grow. Mathematically, we have
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The flow is unstable for
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or (multiplying by sinh? K H and factoring)
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The phase speed plot shows the short waves being trapped to the upper or lower
boundary, while the long waves can interact and grow.

Phase speed

08

c¢/GammaH

KNH/f

phase speed ¢/T'H vs. wavenumber K H

Heat flux

We can calculate the heat flux for by = cos kz, by = dcos(kx — ¢),
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Thus for 0 < ¢ < 7 (as sketched above), we will be fluxing heat northward and (in a
bounded system) reducing the temperature gradient.



