Equatorial beta-plane

Equations

We consider Mercator coordinates
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which have the properties that the scale factors in the z and y direction are the same
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with this form, we have h; = hy = cosf = sech(y/a) and
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where f = 2Qsinf = 2Qtanh(y/a). If we multiply the first and second equations by
sech(y/a) and define 1 = sech(y/a)u, we have
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(Note - this trick will not work as well with the nonlinear equations, but the equatorial
beta-plane approx. is still used for those as well. It’s not really necessary, since we will be
dropping all the y%/a? terms in any case.) We now expand
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and drop the order Z—z terms to get the “equatorial beta-plane” equations
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We shall drop the tildes and use these hereafter.



Single equation for v

From the momentum equations, we can eliminate u to find
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We can also eliminate it from the z-momentum and the mass equation to get a second
relationship
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Now we eliminate P
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One solution is %U:0; we’ll come back to that. The other sets of solutions satisfy
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For solutions with exp(tkz — wt) dependence, we get a y-structure equation

This is the quantum-mechanical harmonic oscillator equation.



Solutions

Gravest mode

We begin with the gravest mode

which has

and will be a satisfactory solution if
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The quantity
R = (gH)1/46—1/2

is called the “equatorial deformation radius” and is the fundamental disturbance scale in
the north-south direction.
This cubic has three roots,

w=—+/gHEk

and

1 — 1 — 4 1 4 Y2

The first root turns out to be spurious; if we consider the z-momentum equation and the
mass equation, we see that
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The two equations are linearly dependent when w? = k%gH. See also equation (2). For
there to be a non-trivial v solution, we must have
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which is true. However, we have still lost a degree of freedom, so that the remaining
equation (1) does not have a pressure which is well-behaved at +oo.
The w? # gHk? cases have all fields well-defined. This solution gives a dispersion
relation as shown in figure (1). Note that the high frequency limit of (4) gives
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and the low frequency limit is
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much like the mid-latitude WKB approximations. This wave is called the Yanai wave
or the mixed Rossby-gravity wave, since the high-frequency positive branch looks like a
gravity wave, while the low-frequeny branch has the characteristics of a Rossby mode. If
we take the convention of positive frequency but allow the wavenumber & to span the whole
real axis, the connections among the modes becomes clearer (see figure 3).
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Higher modes

There are an infinite set of solutions to the structure equation (3)
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which imply the two recursion relations
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giving the dispersion relation above.
These higher modes again have three roots, two gravity waves with
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Eastward travelling waves, m = 2
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Westward travelling waves, m = 2
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Kelvin wave

If we compare the behavior of the equatorial beta-plane to the Hough functions by
plotting w vs. y/gH in figure (2), we notice that one mode is missing; the one with w nearly
proportional to \/gH. This is the kelvin wave mode, and it is connected to the %v =0
root. For finite frequency, this implies v = 0; equation (2) then tells us w = +1/gHk while

equation (1) gives us the meridional structure
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The only well-bhaved solution will be for eastward-propagating waves with
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Dynamically, we just have geostrophic balance of the zonal flow

DN =
TS

P = exp(—

0
:——P
Byu 3y

and an along-equator gravity wave balance
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Eastward travelling waves, m = 2
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Putting all these together gives the general dispersion relation shown in figures (3)

and (4). Essentially, the waves on the equatorial beta plane reproduce the full spherical
results fairly well in an analytically simpler regime.
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