Internal gravity waves (non-rotating)

Boussinesq

From
$$\rho = \rho_0(1 - b/g)$$
, $p = -\rho_0 gz + \rho_0 P$, and $b \ll g$ (and $c_s \gg \sqrt{gH}$)
$$\frac{D}{Dt} \mathbf{u} = -\nabla P + \hat{\mathbf{z}}b$$

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{D}{Dt}b = 0$$
(igw.1)

Linearized

Split into a static state $\frac{\partial}{\partial z}\overline{b}=N^2$, $\overline{P}=\int^z\overline{b}$ and deviations. Assume all products of deviations are negligible.

$$\begin{split} \frac{\partial}{\partial t}u &= -\frac{\partial}{\partial x}P\\ \frac{\partial}{\partial t}v &= -\frac{\partial}{\partial y}P\\ \frac{\partial}{\partial t}w &= -\frac{\partial}{\partial z}P + b \\ \frac{\partial}{\partial x}u + \frac{\partial}{\partial y}v + \frac{\partial}{\partial z}w &= 0\\ \frac{\partial}{\partial t}b + wN^2 &= 0 \end{split}$$
 (igw.2)

Wave solutions

If all fields are proportional to $\exp(ikx + i\ell y + imz - i\omega t)$ then

$$\begin{pmatrix} -i\omega & 0 & 0 & ik & 0 \\ 0 & -i\omega & 0 & i\ell & 0 \\ 0 & 0 & -i\omega & im & -1 \\ ik & il & im & 0 & 0 \\ 0 & 0 & N^2 & 0 & -i\omega \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ P \\ b \end{pmatrix} = 0$$

Nontrivial solutions exist when

$$i\omega \left[\omega^{2}(k^{2}+\ell^{2}+m^{2})-N^{2}(k^{2}+\ell^{2})\right]=0$$

The $\omega=0$ root corresponds to geostrophic (here, just horizontally nondivergent), hydrostatic balance; we'll return to that later. The other root

$$\omega = \pm N \left[\frac{k^2 + \ell^2}{k^2 + \ell^2 + m^2} \right]^{1/2} = \pm N \cos \phi$$
 (igw.3)

Fields

If we pick the structure of one field, we can find the others. For $\theta = \mathbf{k} \cdot \mathbf{x} - \omega t$, we have

$$b = B \cos \theta$$

$$w = -\frac{\omega}{N^2} B \sin \theta$$

$$p = \frac{m}{|\mathbf{k}|^2} B \sin \theta$$

$$u = \frac{mk}{\omega |\mathbf{k}|^2} B \sin \theta$$

$$v = \frac{m\ell}{\omega |\mathbf{k}|^2} B \sin \theta$$

The dispersion relation follows from the continuity eqn.

$$\frac{mk^2 + m\ell^2}{\omega |\mathbf{k}|^2} - \frac{\omega m}{N^2} = 0$$

Single variable version

We can eliminate variables in favor of a single field, w, to get the analogue to the classical wave equation. We begin with the divergence of the momentum equations which gives a diagnostic eqn. for the pressure

$$\nabla^2 P = \frac{\partial}{\partial z} b$$

which we can use to eliminate P from the vertical momentum equation

$$\frac{\partial}{\partial t} \nabla^2 w = -\frac{\partial^2}{\partial z^2} b + \nabla^2 b = \nabla_h^2 b$$

This gives

$$\frac{\partial^2}{\partial t^2} \nabla^2 w = -N^2 \nabla_h^2 w \qquad (igw.4)$$

after using the buoyancy equation.

Vorticity version

In the simplest 2D case (x, z), we can write the equation for the y component of the vorticity, $\xi = \frac{\partial}{\partial z} u - \frac{\partial}{\partial x} w$,

$$\frac{\partial}{\partial t}\xi = -\frac{\partial}{\partial x}b$$

and use the y component of the streamfunction ψ

$$u = \frac{\partial}{\partial z} \psi$$
 , $w = -\frac{\partial}{\partial x} \psi$ \Rightarrow $\xi = \nabla^2 \psi$

to find

$$\frac{\partial}{\partial t} \nabla^2 \psi = -\frac{\partial}{\partial x} b$$
$$\frac{\partial}{\partial t} b = N^2 \frac{\partial}{\partial x} \psi$$

Taking another time-derivative of the vorticity equation gives (4) written in terms of ψ .

Fourier solution

If we have an initial condition $w(\mathbf{x},0)$, we can solve for later times by finding the transform

$$w(\mathbf{x},t) = \int d^3\mathbf{k} \, \hat{w}(\mathbf{k},t) \exp(\imath \mathbf{k} \cdot \mathbf{x})$$

Substituting in the dynamical equation (4) gives

$$\frac{\partial^2}{\partial t^2}\hat{w} = -N^2 \frac{k^2 + \ell^2}{\mathbf{k} \cdot \mathbf{k}} \hat{w} = -\Omega^2 \hat{w}$$

which has solutions like

$$\hat{w}(\mathbf{k},t) = \hat{w}(\mathbf{k},0) \exp(-\imath \Omega(\mathbf{k})t)$$

(There's also the negative sign case – determining how much of each we have will depend on the initial conditions on w and $\frac{d}{dt}w$. We'll begin assuming those are set so that we have energy in only the positive frequency root.) Then

$$w(\mathbf{x},t) = \int d^3\mathbf{k} \, \hat{w}(\mathbf{k},0) \exp(\imath \mathbf{k} \cdot \mathbf{x} - \imath \Omega(\mathbf{k})t)$$

Demos, Page 3: IGW solutions < k=2, m=1, cp=0, 4> < k=1, m=2, cp=0.2> < k=2, m=1, cp=0.4, c0.18> < k=1, m=2, cp=0.2, cg=0.36, -0.18> < k=2, m=2, cp=0.25, cg=0.18, -0.18>

Phase and group velocities

The phase of the wave is $\theta = \mathbf{k} \cdot \mathbf{x} - \omega t$, and the rate of movement in the direction parallel to the wavenumber vector is

$$\delta\theta = \mathbf{k} \cdot \hat{\mathbf{k}} \, c \, \delta t - \omega \delta t = 0 \quad \Rightarrow \quad \delta t \left[|\mathbf{k}| c - \omega \right] = 0$$

so that

$$c = \frac{\omega}{|\mathbf{k}|}$$

But the packet doesn't propagate like that at all. To see how it does, let's suppose the initial condition has a sharply-peaked spectrum

$$\hat{w}(\mathbf{k},0) = \epsilon^{-3} \phi(\frac{\mathbf{k} - \mathbf{k}_0}{\epsilon})$$

so that the initial condition represents a large-scale modulation of a small-scale wave

$$w(\mathbf{x}, t) = \int d^3 \mathbf{k} \, \epsilon^{-3} \phi(\frac{\mathbf{k} - \mathbf{k}_0}{\epsilon}) \exp(\imath \mathbf{k} \cdot \mathbf{x})$$
$$= \int d^3 \mathbf{K} \, \phi(\mathbf{K}) \exp(\imath \mathbf{k}_0 \cdot \mathbf{x} + \imath \epsilon \mathbf{K} \cdot \mathbf{x})$$
$$= \exp(\imath \mathbf{k}_0 \cdot \mathbf{x}) \int d^3 \mathbf{K} \, \phi(\mathbf{K}) \exp(\imath \mathbf{K} \cdot \epsilon \mathbf{x})$$
$$= A(\epsilon \mathbf{x}) \exp(\imath \mathbf{k}_0 \cdot \mathbf{x})$$

The time-dependent solution is

$$w(\mathbf{x},t) = \int d^{3}\mathbf{k} \, \epsilon^{-3} \phi(\frac{\mathbf{k} - \mathbf{k}_{0}}{\epsilon}) \exp(\imath \mathbf{k} \cdot \mathbf{x} - \Omega(\mathbf{k})t)$$

$$= \int d^{3}\mathbf{K} \, \phi(\mathbf{K}) \exp(\imath \mathbf{k}_{0} \cdot \mathbf{x} + \imath \epsilon \mathbf{K} \cdot \mathbf{x} - \imath \Omega(\mathbf{k}_{0} + \epsilon \mathbf{K})t)$$

$$= \exp(\imath \mathbf{k}_{0} \cdot \mathbf{x} - \imath \Omega(\mathbf{k}_{0})t) \int d^{3}\mathbf{K} \, \phi(\mathbf{K}) \exp(\imath \mathbf{K} \cdot \epsilon \mathbf{x} - \imath \Omega(\mathbf{k}_{0} + \epsilon \mathbf{K})t + \imath \Omega(\mathbf{k}_{0})t)$$

$$\simeq \exp(\imath \mathbf{k}_{0} \cdot \mathbf{x} - \imath \Omega(\mathbf{k}_{0})t) \int d^{3}\mathbf{K} \, \phi(\mathbf{K}) \exp(\imath \mathbf{K} \cdot \epsilon \mathbf{x} - \imath \mathbf{K} \cdot \nabla_{\mathbf{k}} \Omega(\mathbf{k}_{0})\epsilon t)$$

$$= A(\epsilon[\mathbf{x} - \nabla_{\mathbf{k}} \Omega t]) \exp(\imath \mathbf{k}_{0} \cdot \mathbf{x} - \imath \Omega(\mathbf{k}_{0})t)$$

Thus the envelope propagates at the group velocity

$$\mathbf{c}_g = \nabla_k \Omega|_{\mathbf{k}_0} \quad or \quad c_{g_i} = \frac{\partial \Omega}{\partial k_i}$$

For internal waves, the group velocity can be found from

$$\Omega^2 = \frac{N^2(k^2 + \ell^2)}{k^2 + \ell^2 + m^2} = N^2 \frac{k^2 + \ell^2}{|\mathbf{k}|^2}$$

giving

$$2\Omega \frac{\partial \Omega}{\partial k} = 2 \frac{km^2 N^2}{|\mathbf{k}|^4} \quad \Rightarrow \quad \frac{\partial \Omega}{\partial k} = N \frac{km^2}{|\mathbf{k}|^3 \sqrt{k^2 + \ell^2}}$$

and

$$\frac{\partial\Omega}{\partial\ell} = N \frac{\ell m^2}{|\mathbf{k}|^3 \sqrt{k^2 + \ell^2}} \quad , \quad \frac{\partial\Omega}{\partial m} = -N \frac{m\sqrt{k^2 + \ell^2}}{|\mathbf{k}|^3}$$

Thus

$$\mathbf{c}_g = rac{N}{|\mathbf{k}|^3 \sqrt{k^2 + \ell^2}} (km^2, \ell m^2, -m(k^2 + \ell^2))$$

Note that $\mathbf{k} \cdot \mathbf{c}_g = 0$; the group velocity is parallel to the planes of constant phase.

Vertical modes

If N is constant, and the domain is bounded by a bottom and top at z = 0 and z = H, respectively, we can write

$$w = W(x, y, t) \sin(M\pi/H)$$

and (for M=1)

$$\frac{\partial^2}{\partial t^2} \left(1 - \frac{H^2}{\pi^2} \nabla_h^2 \right) W = + N^2 \frac{H^2}{\pi^2} \nabla_h^2 W$$

giving

$$\omega^2 = \frac{N^2 K^2}{1 + K^2}$$

with $K = kH/\pi$.

Note that the phase speed

$$c = \frac{N}{\left[\frac{M^2\pi^2}{H^2} + k^2\right]^{1/2}} = \frac{NH}{M\pi} \left[1 - \left(\frac{kH}{M\pi}\right)^2\right]^{-1/2}$$

gives only weak dispersion for long waves $\delta c/c \sim k^2 H^2/M^2 \pi^2$. The long wave speed decreases for modes with more wiggles in the vertical. Demos, Page 5: Dispersion relation <disp rel>

Another view of group velocity

Consider superimposing two waves,

$$0.5\cos(k_1x - \omega_1t) + 0.5\cos(k_2x - \omega_2t)$$

with $k_1 < k_2$; the result has a "beat-frequency" modulation. The waves will be back in phase at both their peaks when

$$(N+1)\frac{2\pi}{k_2} = N\frac{2\pi}{k_1} \quad \Rightarrow \quad N = \frac{k_1}{k_2 - k_1} \quad \Rightarrow \quad L = \frac{2\pi}{k_2 - k_1}$$

To calculate the motion consider the time at which the two peaks catch up with each other

$$X_1 = -\frac{2\pi}{k_1} + \frac{\omega_1}{k_1}T = X_2 = -\frac{2\pi}{k_2} + \frac{\omega_2}{k_2}T \quad \Rightarrow \quad T = \frac{2\pi(k_2 - k_1)}{\omega_1 k_2 - \omega_2 k_1}$$

and we see a new maximum constructive interference point at X_1 . The speed of motion is therefore

$$\frac{X_1}{T} = \frac{\omega_1}{k_1} - \frac{2\pi}{k_1 T} = \frac{\omega_2 - \omega_1}{k_2 - k_1}$$

Demos, Page 6: Two waves <initial> <initial> Demos, Page 6: Two waves <initial> <evolution> <NK/(1+K*K)> <NK/(1+K*K)**2>

(Continued on next page.)

Revision of two waves

Assuming that the shorter wave travels more slowly and the two waves start at time t = 0 being in phase at x = 0, the pattern will repeat exactly when the **previous** crests of each of the two waves match up precisely:

Two wave geometry. Solid=sum; dashed=longer, faster; dotted=shorter, slower

Thus we have

$$c_1 T = \frac{2\pi}{k_1} + c_g T$$
 , $c_2 T = \frac{2\pi}{k_2} + c_g T$

We can think of these as simultaneous equations for 1/T and c_g :

$$c_g + \frac{2\pi}{k_1} \frac{1}{T} = c_1$$
$$c_g + \frac{2\pi}{k_2} \frac{1}{T} = c_2$$

solving these gives

$$c_g = \frac{c_1 \frac{2\pi}{k_2} - c_2 \frac{2\pi}{k_1}}{\frac{2\pi}{k_2} - \frac{2\pi}{k_1}} = \frac{c_1 k_1 - c_2 k_2}{k_1 - k_2} = \frac{\omega_1 - \omega_2}{k_1 - k_2}$$

Dispersion of group

If we consider the next order in our expansion for sharply peaked spectra

$$w \simeq \exp(i\mathbf{k}_0 \cdot \mathbf{x} - i\Omega(\mathbf{k}_0)t) \int d^3\mathbf{K} \,\phi(\mathbf{K}) \exp(i\mathbf{K} \cdot \epsilon \mathbf{x} - i\mathbf{K} \cdot \nabla_{\mathbf{k}}\Omega(\mathbf{k}_0)\epsilon t) \times$$
$$\exp(-i\frac{1}{2}\frac{\partial^2\Omega}{\partial k_i \partial k_j} K_i K_j \epsilon^2 t)$$

In a frame moving with the group $\mathbf{X} = \epsilon \mathbf{x} - \mathbf{c}_g \epsilon t$, the changes on a time scale $\tau = \epsilon^2 t$ are determined by

$$w \simeq \exp(i\mathbf{k}_0 \cdot \mathbf{x} - i\Omega(\mathbf{k}_0)t) \int d^3\mathbf{K} \,\phi(\mathbf{K}) \exp(i\mathbf{K} \cdot \mathbf{X}) \exp(-i\frac{1}{2}\frac{\partial^2\Omega}{\partial k_i \partial k_j} K_i K_j \tau)$$

For this we find the amplitude satisfies the Schrödinger equation

$$\frac{\partial}{\partial \tau} w = \frac{i}{2} \frac{\partial^2 \Omega}{\partial k_i \partial k_j} \frac{\partial}{\partial X_i} \frac{\partial}{\partial X_j} w$$

This looks like a diffusion equation (with an imaginary diffusivity) and can be solved in much the same way. In particular, we can look for Gaussian solutions

$$w = A(\tau) \exp(-\alpha_{ij}(\tau) X_i X_j)$$

The result can be seen in the 1D case

$$\frac{\partial}{\partial \tau} w = \frac{\imath}{2} \frac{\partial^2 \Omega}{\partial k^2} \frac{\partial^2}{\partial X^2} w$$

Plugging $w = A(\tau) \exp(-\alpha(\tau)X^2)$ into the previous equation and gathering the terms which are proportional to X^2 and to 1 gives

$$\frac{\partial}{\partial t}\alpha = -2i\Omega''\alpha^2$$

$$\frac{\partial}{\partial t}A = -\imath \Omega'' \alpha A$$

This has solutions

$$\alpha = \frac{\alpha_0}{1 + 2i\alpha_0 \Omega'' t}$$

$$A = A(0)\sqrt{\frac{\alpha(t)}{\alpha_0}}$$

Demos, Page 8: 1D case <packet motion and spread> <amplitude decay>

Energy

We can form an energy equation from the linearized equations

$$\frac{\partial}{\partial t} \frac{1}{2} (\mathbf{u} \cdot \mathbf{u}) = \frac{\partial}{\partial t} KE = -\mathbf{u} \cdot \nabla P + wb$$
$$= -\nabla \cdot (\mathbf{u}P) + wb$$

The last term represents generation of kinetic energy from potential energy (heavy fluid [b < 0] moving down [w < 0] or light fluid moving up). We can define the available potential energy here as $\frac{1}{2}b^2/N^2$

$$\frac{\partial}{\partial t} \frac{1}{2} \frac{b^2}{N^2} = \frac{\partial}{\partial t} PE = -wb$$

so that the change in total energy in a parcel is given by the flux across the boundary of the parcel $\mathbf{u}P$

$$\frac{\partial}{\partial t}KE + PE = \frac{\partial}{\partial t}E = -\nabla \cdot (\mathbf{u}P)$$

For IGW's, the energy is

$$E = \frac{1}{2} \left(\frac{m^2 (k^2 + \ell^2)}{\omega^2 |\mathbf{k}|^4} + \frac{\omega^2}{N^4} \right) B^2 \sin^2 \theta + \frac{1}{2} \frac{1}{N^2} B^2 \cos^2 \theta$$
$$= \frac{1}{2} \frac{B^2}{N^2} \sin^2 \theta + \frac{1}{2} \frac{B^2}{N^2} \cos^2 \theta$$
$$= \frac{1}{2} \frac{B^2}{N^2}$$

and the flux is just

$$\mathbf{F} = \frac{m}{|\mathbf{k}|^2} \left(\frac{mk}{\omega |\mathbf{k}|^2} , \frac{m\ell}{\omega |\mathbf{k}|^2} , -\frac{\omega}{N^2} \right) B^2 \sin^2 \theta$$

which averages to

$$\begin{split} \mathbf{F} &= \frac{1}{2} \frac{m}{|\mathbf{k}|^2} \left(\frac{mk}{\omega |\mathbf{k}|^2} , \frac{m\ell}{\omega |\mathbf{k}|^2} , -\frac{\omega}{N^2} \right) B^2 \\ &= \frac{1}{2} \frac{B^2}{N^2} \left(\frac{m^2 k N}{\sqrt{k^2 + \ell^2} |\mathbf{k}|^3} , \frac{m^2 \ell N}{\sqrt{k^2 + \ell^2} |\mathbf{k}|^3} , -\frac{m\sqrt{k^2 + \ell^2} N}{|\mathbf{k}|^3} \right) B^2 \\ &= \mathbf{c}_q E \end{split}$$

The energy moves at the group velocity.

Reflection from a sloping surface

Demos, Page 9: Reflection problem < geometry>

Let us consider IGW's incident on a surface sloped at angle β from horizontal. The boundary condition at the surface $z=z\tan\beta$ is that the normal component of the velocity must vanish

$$\mathbf{u} \cdot \hat{\mathbf{n}} = -u \sin \beta + w \cos \beta = 0$$

In terms of the streamfunction, this condition becomes

$$-\sin\beta \frac{\partial}{\partial z}\psi - \cos\beta \frac{\partial}{\partial x}\psi = -\hat{\mathbf{t}} \cdot \nabla\psi = 0$$

so that we can simply assume $\psi(s\cos\beta, s\sin\beta, t) = 0$ with s being the distance along the slope.

We write the solution in terms of an incident wave and a reflected wave

$$\psi = A\cos(kx + mz - \omega t) + A_r\cos(k_r x + m_r z - \omega_r t)$$

and apply the boundary condition

$$A\cos(s\,\mathbf{k}\cdot\hat{\mathbf{t}}-\omega t) + A_r\cos(s\,\mathbf{k}_r\cdot\hat{\mathbf{t}}-\omega_r t) = 0$$

we see that $\omega_r = \omega$, $\mathbf{k} \cdot \hat{\mathbf{t}} = \mathbf{k}_r \cdot \hat{\mathbf{t}}$, and $A_r = -A$ in order that the equation above holds for all s and t.

The geometry is now clear: since the frequencies are the same,

$$\cos(\phi_r) = \cos(\phi)$$

so that the angle of the reflected wavenumber from horizontal is the same as that of the incident wave; secondly, the projection along the slope must match.

Demos, Page 10: incident/refl <geometry> <group vel> <phi=30,beta=0> <wavefronts> <phi=30,beta=15> <wavefronts> <phi=30,beta=25> <wavefronts> <phi=30,beta=45> <wavefronts>

Note that the reflected wavenumber satisfies

$$K_r \cos(\phi + \beta) = K_i \cos(\phi - \beta)$$

and becomes infinite when $\phi + \beta = 90^{\circ}$ — when the reflected wave group velocity is tangent to the slope. Beyond this critical slope, we satisfy the boundary condition by using $\omega_r = -\omega$ and $\mathbf{k} \cdot \hat{\mathbf{t}} = -\mathbf{k}_r \cdot \hat{\mathbf{t}}$.

Demos, Page 10: large slope <phi=60,beta=15> <wavefronts> <phi=60,beta=45> <wavefronts> <phi=60,beta=55> <wavefronts> <phi=60,beta=85> <wavefronts>

When the slope is shallow, a wave can focus between the surface and the bottom and propagate into the corner, with its scale becoming smaller and smaller. Demos, Page 10: focus <incident> <1st refl> <2nd refl> <3rd refl> <4th refl> <5th refl> <6th refl> <7th refl>

Generation by flow over topography

One mechanism for creating internal gravity wave is flow over topography. We'll consider the simple case with zonal flow at a sinusoidal topography at $z = h_0 \cos(kx)$. The equations of motion will be linearized assuming the mean flow, U, is much larger than the wave flows \mathbf{u} .

$$\frac{\partial}{\partial t}\mathbf{u} + U\frac{\partial}{\partial x}\mathbf{u} = -\nabla P + b\hat{\mathbf{z}}$$
$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial}{\partial t}b + U\frac{\partial}{\partial x}b + wN^2 = 0$$

The dispersion relation is the same, except we replace ω by $\omega - kU$

$$\omega - kU = \pm \frac{Nk}{|\mathbf{k}|}$$

For the steady response $\omega = 0$, we will need to use the minus sign.

$$\omega = kU - \frac{Nk}{|\mathbf{k}|}$$

The condition at the bottom is, again, no normal flow.

$$(U\hat{\mathbf{x}} + \mathbf{u}) \cdot \hat{\mathbf{n}} = (U\hat{\mathbf{x}} + \mathbf{u}) \cdot \frac{\hat{\mathbf{z}} - \nabla h}{\sqrt{1 + |\nabla h|^2}} = 0$$

or

$$(U+u)\frac{\partial}{\partial x}h=w \quad at \quad z=h(x,y)$$

(We can find the normal by thinking about a function F(x, y, z) = z - h(x, y); its threedimensional gradient is perpendicular to the surfaces of constant F, in particular the one at F = 0 which represents the boundary.) This linearizes to

$$w = U \frac{\partial}{\partial x} h \quad at \quad z = 0$$

when the slope and the net height change is small. This can also be written as

$$\psi(x,0,t) + Uh(x,y) = 0$$

Steady solution [short scales]

For a steady solution, we have

$$\sqrt{k^2 + m^2} = \frac{N}{U}$$
 or $m^2 = \frac{N^2}{U^2} - k^2$

If the topographic scale is short compared to U/N, the m^2 will be negative so that if $\hat{m} = \sqrt{k^2 - N^2/U^2}$ then

$$\psi = -Uh_0 \Re(e^{ikx \mp \hat{m}z})$$

We must choose the negative sign so that the disturbance decays with height

$$\psi = -Uh_0 \cos(kx) \exp(-\sqrt{k^2 - N^2/U^2} z)$$

Demos, Page 11: short scales < Uk/N=1.01> < Uk/N=1.1> gwtop2.png < Uk/N=1.5> < Uk/N=2>

Long scales

If $k^2 < N^2/U^2$ then m is real and our solution looks like

$$\psi = -Uh_0 \Re(e^{ikx \pm imz})$$

and we must decide which sign to use (or have some contribution from each). We shall discuss a number of ways of resolving the issue.

Demos, Page 12: long scales $<\!Uk/N=0.99\!> <\!Uk/N=0.9\!> <\!Uk/N=0.8\!> <\!Uk/N=0.7\!>$

GROUP VELOCITY: Since the topography is the source of the waves, we would expect the vertical component of \mathbf{c}_g to be positive. This means that if we suddenly add or eliminate the topography, the disturbance in the wave field would propagate upwards. Therefore

$$\frac{\partial}{\partial m} \left[Uk - \frac{Nk}{\sqrt{k^2 + m^2}} \right] = \frac{Nkm}{(k^2 + m^2)^{3/2}} > 0$$

The positive sign is the correct one, so that

$$\psi = -Uh_0\cos(kx + \sqrt{N^2/U^2 - k^2}z)$$

ENERGY FLUX: For these 2-D motions, we can write the average (as in zonal average) vertical energy flux as

$$\overline{wP} = -\frac{\overline{\partial \psi}}{\partial x}P = \overline{\psi}\frac{\overline{\partial P}}{\partial x}$$

and we expect it to be positive. Using the zonal momentum equation gives

$$\overline{wP} = -\overline{\psi} \frac{\partial^2 \psi}{\partial t \partial z} - U \overline{\psi} \frac{\partial^2 \psi}{\partial x \partial z} = -\overline{\psi} \frac{\partial^2 \psi}{\partial t \partial z} + U \overline{\frac{\partial \psi}{\partial x}} \frac{\partial \psi}{\partial z}$$

For steady flow with $\psi = -Uh_0\cos(kx \pm mz)$, we have

$$\overline{wP} = \pm \frac{1}{2} U^3 h_0^2 km$$

again showing the plus sign to be the desired one.

DAMPING: Another approach is to add damping to the equations so that even the vertically wavy mode decays and reject any growing solution. We take

$$\frac{\partial}{\partial t}\mathbf{u} + U\frac{\partial}{\partial x}\mathbf{u} = -\nabla P + b\hat{\mathbf{z}} - \epsilon\mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\frac{\partial}{\partial t}b + U\frac{\partial}{\partial x}b + wN^2 = -\epsilon b$$

We now have

$$(ikU + \epsilon)^2 = -\frac{N^2k^2}{k^2 + m^2} \quad \Rightarrow \quad m^2 = \frac{N^2}{U^2(1 - i\epsilon/kU)^2} - k^2$$

The imaginary part of m is

$$\Im(m) \simeq \frac{1}{\Re(m)} \frac{\epsilon N^2}{kU^3}$$

so that vertically decaying solutions $\Im(m) > 0$ require $\Re(m) > 0$ as before.

INITIAL VALUE PROBLEM: Finally, we can look at what happens if we suddenly turn the flow or the topography on. Using

$$\left(\frac{\partial}{\partial t} + ikU\right)^2 \left(\frac{\partial^2}{\partial z^2} - k^2\right) \psi = k^2 N^2 \psi$$

with the initial and boundary conditions

$$\psi(z,0) = 0$$
 , $\psi(0,t) = -Uh_0$, $\psi(\infty,t) = 0$

The Laplace transformed problem gives the same z structure equation as in the damped system

$$\left(\frac{\partial^2}{\partial z^2} - k^2\right)\psi^T = -\frac{N^2}{(U^2 - 2isU/k - s^2/k^2)}\psi^T$$

with

$$\psi^T(0,s) = -Uh_0/s$$
 , $\psi^T(\infty,s) = 0$

Again the positive root is the proper one

$$\psi^T = -Uh_0 \frac{1}{s} \exp(i \left[\frac{N^2}{(U^2 - 2isU/k - s^2/k^2)} - k^2 \right]^{1/2} z)$$

The inverse transform

$$\psi = -Uh_0 \int_{-i\infty}^{i\infty} \frac{1}{s} \exp(i \left[\frac{N^2}{(U^2 - 2isU/k - s^2/k^2)} - k^2 \right]^{1/2} z) e^{st}$$

is dominated by the singularity at s=0; for large time, we recover the standing wave solution. Demos, Page 14: IGW data *<Cloud patterns> <Breaking waves> <Appalacian> <i><Surface slicks> <Internal tides> <Georges Bank> <Northern Oregon>*

The Nonlinear Problem

We can also look at the nonlinear problem in simple 2-D cases. The steady equations

$$\mathbf{u} \cdot \nabla q = -\frac{\partial}{\partial x} b$$
$$\mathbf{u} \cdot \nabla (b + N^2 z) = 0$$

can be solved by noting that $\mathbf{u} \cdot \nabla \phi = 0$ implies $\phi = \Phi(\psi)$ – the advected property is constant along streamlines, since the parcels of fluid move along the streamlines in steady flows. The streamfunction here includes both the mean flow and the fluctuations $\psi = Uz + \psi'(\mathbf{x})$. Therefore

$$N^2z + b'(\mathbf{x}) = B(Uz + \psi'(\mathbf{x})) = \frac{N^2}{U}(Uz + \psi')$$

Uniqueness could be a problem, of course. In any case, we'll take

$$b' = \frac{N^2}{U}\psi'$$

The vorticity equation then tells us that

$$\mathbf{u} \cdot \nabla q = w \frac{N^2}{U} \quad \Rightarrow \quad \mathbf{u} \cdot \nabla (q - \frac{N^2}{U} z) = 0$$

so that

$$\nabla^{2} \psi' - \frac{N^{2}}{U} z = Q(Uz + \psi') = -\frac{N^{2}}{U^{2}} (Uz + \psi')$$

or

$$\nabla^2 \psi' = -\frac{N^2}{U^2} \psi'$$

with the boundary conditions

$$\psi'(x,h) + Uh = 0$$
 , $\psi' \to 0$ or radiation condition

Note that the linear solution is a perfectly good one – we just have to find the topography that matches it!

$$Uh_0\cos(kx)\exp(-\hat{m}h) = Uh$$
 or $h_0\cos(kx) = h\exp(\hat{m}h)$

$$h_0\cos(kx + mh(x)) = h(x)$$

Demos, Page 15: topographies <Uk/N=1.001> <Uk/N=1.01> <Uk/N=1.05> <Uk/N=1.07> <Uk/N=1.08> <Uk/N=0.99> <Uk/N=0.9> <Uk/N=0.5> <Uk/N=0.2>

WKB and modes

We will now consider propagation and vertical modes in the case where the Brunt-Väisälä frequency varies with z. The normal mode problem

$$\frac{\partial^2}{\partial t^2} \nabla^2 w + N^2 \nabla_h^2 w = 0 \quad , \quad w(0) = w(H) = 0$$

can be separated as $w = W(z) \exp(i[kx + \ell y - \omega t])$, and the eigenvalue problem becomes

$$\frac{\partial^2}{\partial z^2}W - \mathbf{k}_h^2 W + \frac{N^2}{\omega^2} \mathbf{k}_h^2 = 0 \quad , \quad W(0) = W(H) = 0$$

with $\mathbf{k}_h^2 = k^2 + \ell^2$. This is a Sturm-Liouville problem with eigenvalue $\lambda = 1/\omega^2$. For a given $N^2(z)$ and \mathbf{k}_h^2 , we will find an infinite set of eigenfunctions with increasing λ 's and therefore decreasing frequencies. In the case of constant N, we have

$$W = \sin(M\pi z/H) \quad , \quad \omega = N\sqrt{rac{\mathbf{k}_h^2 H^2}{\mathbf{k}_h^2 H^2 + M^2 \pi^2}}$$

When N is not constant, we can look for approximate solutions

$$W \simeq A(\epsilon z) \sin(\epsilon^{-1}\theta(\epsilon z))$$

so that

$$\frac{\partial^2}{\partial z^2}W = \epsilon^2 A'' \sin\frac{\theta}{\epsilon} + \epsilon [2A'\theta' + A\theta''] \cos\frac{\theta}{\epsilon} - A\theta'^2 \sin\frac{\theta}{\epsilon}$$

The lowest order problem gives

$$\theta'^2 = \mathbf{k}_h^2 \left[\frac{N^2}{\omega^2} - 1 \right]$$

or

$$\theta = |\mathbf{k}_h| \int_0^z \sqrt{\frac{N^2}{\omega^2} - 1}$$

and an eigenvalue relationship

$$M\pi = |\mathbf{k}_h| H \frac{1}{H} \int_0^H \sqrt{\frac{N^2}{\omega^2} - 1}$$

The amplitude satisfies

$$2A'\theta' + A\theta'' = 0 \implies 2\frac{1}{A}\frac{d}{dz'}A = -\frac{1}{\theta'}\frac{d}{dz'}\theta'$$

so that

$$A = const \frac{\theta_0'}{\theta'}^{1/2} = const |\mathbf{k}_h|^{-1/2} \left[\frac{N^2}{\omega^2} - 1 \right]^{-1/4}$$

— the amplitude is largest in the regions of small N and slowly changing phase. This makes sense since the energy flux is proportional to the vertical wavenumber times the amplitude squared.

The results above assume that ω is smaller than the minimum value of N so that the solution remains sinusoidal. When that is not the case, the waves will have a turning point and will be exponentially damped in the region where $\omega > N$.

Demos, Page 16: modes <N squared> <kh=0.01> <kh=0.1> <kh=1> <kh=1>

More general WKB form

We now consider propagation in an inhomogeneous medium. The waves will be locally sinusoidal

$$w = A(\mathbf{x}, t) \exp(i\theta(\mathbf{x}, t))$$

with the implicit assumption that the gradients of θ are large (we could put in the ϵ factors as before). Locally, we can identify the effective wavenumber and frequency in terms of the derivatives of θ :

$$\mathbf{k} = \nabla \theta \quad , \quad \omega = -\frac{\partial}{\partial t} \theta$$

To calculate the evolution of the phase, we note that the largest terms in the dynamical equation will give the dispersion relation

$$\left(\frac{\partial \theta}{\partial t}\right)^2 |\nabla \theta|^2 - N^2 |\nabla_h \theta|^2 = 0$$

where ∇_h is the horizontal gradient $(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, 0)$ (in Cartesian coordinates). From this, we obtain an evolution equation for θ

$$\frac{\partial}{\partial t}\theta = -N\frac{|\nabla_h \theta|}{|\nabla \theta|} \equiv -\Omega(\nabla \theta, \mathbf{x}, t)$$

This equation implies that the wavenumbers and frequency evolve as the wave packet moves through the medium. To see this, consider the case N = N(z) and suppose that the horizontal and vertical wavenumbers are initially constant

$$\theta(x, z, 0) = k_0 x + m_0 z$$

At time zero, we have

$$\frac{\partial}{\partial t}\theta = -N(z)\frac{k_0}{\sqrt{k_0^2 + m_0^2}}$$

so that

$$\theta(x, z, \delta t) = k_0 x + m_0 z - N(z) \frac{k_0}{\sqrt{k_0^2 + m_0^2}} \delta t$$

and the vertical wavenumber is now

$$\frac{\partial}{\partial z}\theta = m_0 - N'(z) \frac{k_0}{\sqrt{k_0^2 + m_0^2}} \delta t$$

giving a new frequency as well. Likewise, even with constant N, if $\frac{\partial}{\partial z}\theta$ is not constant, the value of $\frac{\partial}{\partial t}\theta$ will also be non-uniform. Therefore the vertical wavenumber changes. To see this more precisely, we can take a z derivative of the evolution equation to find

$$\frac{\partial}{\partial t}\theta_z = -\frac{\partial\Omega}{\partial\theta_z}\frac{\partial}{\partial z}\theta_z - \frac{\partial\Omega}{\partial z} = -c_{g_z}\frac{\partial}{\partial z}\theta_z - \frac{\partial\Omega}{\partial z}$$

Using $\frac{\partial}{\partial z}\theta = \theta_z$. In the internal gravity wave case

$$\frac{\partial}{\partial t}\theta_z = -N'(z)\frac{k_0}{\sqrt{k_0^2 + \theta_z^2}} + N\frac{k_0\theta_z}{[k_0^2 + \theta_z^2]^{3/2}}$$

In general, we find

$$\frac{\partial}{\partial t} \nabla_i \theta + (\mathbf{c}_g \cdot \nabla) \nabla_i \theta \equiv D_g \theta_i = -\nabla_i \Omega$$

Likewise, we note that $\frac{\partial \theta}{\partial t}$ at time δt will be different from $\frac{\partial \theta}{\partial t}$ at time 0, since it will be evaluated using the new vertical wavenumber.

$$\frac{\partial}{\partial t} \frac{\partial \theta}{\partial t} + \mathbf{c}_g \cdot \nabla \frac{\partial \theta}{\partial t} = D_g \theta_t = -\frac{\partial}{\partial t} \Omega$$

Finally, we look at the amplitude equation, which comes from the first order terms in

$$(i\theta_t + \frac{\partial}{\partial t})^2 (i\nabla\theta + \nabla)^2 A + (i\nabla_h \theta + \nabla_h)^2 A N^2 = 0$$

This gives

$$\theta_t \frac{\partial}{\partial t} (|\nabla \theta|^2 A) + \frac{\partial}{\partial t} (\theta_t |\nabla \theta|^2 A) + \theta_t^2 \nabla \theta \cdot \nabla A + \theta_t^2 \nabla \cdot (A \nabla \theta) - \nabla_h \theta \cdot \nabla_h (N^2 A) - \nabla_h \cdot (N^2 A \nabla_h \theta) + \nabla_h (N$$

the terms involving derivatives of A are

$$2\theta_t |\nabla \theta|^2 \frac{\partial A}{\partial t} + 2\theta_t |\nabla \theta|^2 \frac{\theta_t \nabla \theta}{|\nabla \theta|^2} \cdot \nabla A - 2\theta_t |\nabla \theta|^2 \frac{\theta_t \nabla_h \theta}{|\nabla_h \theta|^2} \cdot \nabla A = 2\theta_t |\nabla \theta|^2 D_g A$$

using the dispersion relation

$$\theta_t^2 = N^2 \frac{|\nabla_h \theta|^2}{|\nabla \theta|^2}$$

and the definition of the group velocity, which gives

$$\mathbf{c}_g = \theta_t \left[\frac{\nabla \theta}{|\nabla \theta|^2} - \frac{\nabla_h \theta}{|\nabla_h \theta|^2} \right]$$

The amplitude equation becomes

$$2\theta_t |\nabla \theta|^2 D_g A + A \left[2\theta_t \frac{\partial}{\partial t} |\nabla \theta|^2 + |\nabla \theta|^2 \frac{\partial \theta_t}{\partial t} + \theta_t^2 \nabla^2 \theta - \nabla_h \theta \cdot \nabla_h N^2 - \nabla_h \cdot (N^2 \nabla_h \theta) \right] = 0$$

Multiplying by $\frac{1}{2}A^*$ and adding the conjugate gives

$$\theta_t |\nabla \theta|^2 D_g |A|^2 + |A|^2 \left[2\theta_t \frac{\partial}{\partial t} |\nabla \theta|^2 + |\nabla \theta|^2 \frac{\partial \theta_t}{\partial t} + \theta_t^2 \nabla^2 \theta - \nabla_h \theta \cdot \nabla_h N^2 - \nabla_h \cdot (N^2 \nabla_h \theta) \right] = 0$$

Next we manipulate the divergence terms

$$\begin{aligned} \theta_t^2 \nabla^2 \theta - \nabla (N^2 \nabla_h \theta) &= \nabla \cdot \left(\theta_t |\nabla \theta|^2 \frac{\theta_t \nabla \theta}{|\nabla \theta|^2} - \theta_t |\nabla \theta|^2 \frac{\theta_t \nabla_h \theta}{|\nabla_h \theta|^2} \right) - \nabla \theta \cdot \nabla \theta_t^2 \\ &= \nabla \cdot (\theta_t |\nabla \theta|^2 \mathbf{c}_q) - \nabla \theta \cdot \nabla \theta_t^2 \end{aligned}$$

Combining these with the first two terms gives

$$\begin{split} 2\theta_t \frac{\partial}{\partial t} |\nabla \theta|^2 + |\nabla \theta|^2 \frac{\partial \theta_t}{\partial t} + \theta_t^2 \nabla^2 \theta - \nabla_h \cdot (N^2 \nabla_h \theta = \theta_t \frac{\partial}{\partial t} |\nabla \theta|^2 + D_g (\theta_t |\nabla \theta|^2) + \theta_t |\nabla \theta|^2 \nabla \cdot \mathbf{c}_g - \nabla \theta \cdot \nabla \theta_t^2 \\ &= D_g (\theta_t |\nabla \theta|^2) + \theta_t |\nabla \theta|^2 \nabla \cdot \mathbf{c}_g \end{split}$$

Finally, we use

$$-2N\nabla_h\theta\cdot\nabla_hN=2N\nabla_h\theta\cdot\frac{|\nabla\theta|}{\nabla_h\theta|}D_g\nabla_h\theta=-\theta_t|\nabla\theta|^2\frac{1}{|\nabla_h\theta|^2}D_g|\nabla_h\theta|^2$$

Putting these all together gives

$$\theta_t |\nabla \theta|^2 D_g |A|^2 + |A|^2 \left[D_g \theta_t |\nabla \theta|^2 - \theta_t |\nabla \theta|^2 \frac{1}{|\nabla_h \theta|^2} D_g |\nabla_h \theta|^2 + \theta_t |\nabla \theta|^2 \nabla \cdot \mathbf{c}_g \right] = 0$$

Multiply everything by $1/\theta_t |\nabla \theta|^2 |A|^2$, put in terms of logs, combine the terms, and undo the logs; we find

$$D_g \theta_t \frac{|\nabla \theta|^2 |A|^2}{|\nabla_h \theta|^2} + \theta_t \frac{|\nabla \theta|^2 |A|^2}{|\nabla_h \theta|^2} \nabla \cdot \mathbf{c}_g = 0$$

If we substitute the definition of energy from the lowest order relationships

$$i\theta_t \mathbf{u} = -i\nabla\theta p + b\hat{\mathbf{z}}$$
$$\nabla\theta \cdot \mathbf{u} = 0$$
$$i\theta_t b + wN^2 = 0$$

giving

$$E = \frac{|\nabla \theta|^2}{|\nabla_h \theta|^2} |A|^2$$

Thus we arrive at the form

$$\frac{\partial}{\partial t}\theta_t E + \nabla \cdot (\mathbf{c}_g \theta_t E) = 0$$

Using $D_g \theta_t = 0$ (N^2 independent of time) tells us that the energy in the wave changes by divervences of the energy flux

$$\frac{\partial}{\partial t}E + \nabla \cdot (\mathbf{c}_g E) = 0$$

Obviously, this is a non-trivial process; for the internal gravity wave problem, we can take a simpler approach, which is to work directly from the equations of motion assuming all the variables have a WKB form:

$$b = b(\mathbf{x}, t)e^{i\theta(\mathbf{x}, t)} + b^*(\mathbf{x}, t)e^{-i\theta(\mathbf{x}, t)}$$

Then the equations become

$$i\theta_t \mathbf{u} + \frac{\partial}{\partial t} \mathbf{u} = -iP\nabla\theta - \nabla P + b\hat{\mathbf{z}}$$
$$i\nabla\theta \cdot \mathbf{u} + \nabla \cdot \mathbf{u} = 0$$
$$i\theta_t b + \frac{\partial}{\partial t} b + wN^2 = 0$$

The kinetic energy, averaged over the rapidly varying phase is

$$\frac{1}{2}\langle (\mathbf{u}e^{\imath\theta(\mathbf{x},t)} + \mathbf{u}^*e^{-\imath\theta(\mathbf{x},t)})^2 \rangle = \frac{1}{2}\langle \mathbf{u} \cdot \mathbf{u}e^{2\imath\theta(\mathbf{x},t)} + 2\mathbf{u} \cdot \mathbf{u}^* + \mathbf{u}^* \cdot \mathbf{u}^*e^{-2\imath\theta(\mathbf{x},t)})^2 \rangle = \mathbf{u} \cdot \mathbf{u}^*$$

so that we can form the KE eqn. by dotting the first equation with \mathbf{u}^* and adding the conjugate

$$\frac{\partial}{\partial t} \mathbf{u} \cdot \mathbf{u}^* = -i(P\mathbf{u}^* \cdot \nabla \theta - P^*\mathbf{u} \cdot \nabla \theta) - \mathbf{u}^* \cdot \nabla P - \mathbf{u} \cdot \nabla P^* + w^*b + wb^*$$

$$= -P \cdot \nabla \mathbf{u}^* - P^*\nabla \cdot \mathbf{u} - \mathbf{u}^* \cdot \nabla P - \mathbf{u} \cdot \nabla P^* + w^*b + wb^*$$

$$= -\nabla \cdot (\mathbf{u}P^* + \mathbf{u}^*P) + w^*b + wb^*$$

(using the continuity equation). Multiplying the buoyancy equation by b^* and adding the conjugate gives

$$\frac{\partial}{\partial t}bb^* + (wb^* + w^*b)N^2 = 0$$

or, in terms of the available potential energy bb^*/N^2 (assuming N^2 is time-independent),

$$\frac{\partial}{\partial t} \frac{bb^*}{N^2} + wb^* + w^*b = 0$$

From these, we find

$$\frac{\partial}{\partial t}E = -\nabla \cdot (\mathbf{u}P^* + \mathbf{u}^*P)$$

or, using the equipartition of energy at the lowest order (all that's now needed)

$$\frac{\partial}{\partial t}E = -\nabla \cdot (\mathbf{u}P^* + \mathbf{u}^*P) = -\nabla \cdot (\mathbf{c}_g E)$$