Internal gravity waves (non-rotating)

Boussinesq
From p = po(1 = b/g), p = —pogz + poP, and b << g (and cs >> \/gH)
D
v = —VP + zb
V-u=0 (igw.1)
D
—b=0
Dt
Linearized

Split into a static state %5 = N2, P = [*b and deviations. Assume all products of
deviations are negligible.

9,__9

ot Oz

o __90

ot = " ay

0 0 )
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T e (igw-2)
2u + 21} + w=
ox oy 0z
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Wave solutions

If all fields are proportional to exp(ikx + 1ly + vmz — wt) then

—w 0 0 1k 0 U

0 —w 0 74 0 v

0 0 —w wmm -1 w | =0
1k i m 0 0 P

0 0 N? 0 —w b

Nontrivial solutions exist when
w [w2(k2 + 02 +m?) — N?(k? + 62)] =0
The w = 0 root corresponds to geostrophic (here, just horizontally nondivergent),
hydrostatic balance; we’ll return to that later. The other root

k2 + ¢?

1/2

w:iN[



Fields

If we pick the structure of one field, we can find the others. For § = k - x — wt, we
have

b= Bcosf

w = —%Bsin&
p= %Bsin@
U= %kkPBsinH
v = %Bsin@

The dispersion relation follows from the continuity eqn.

mk? +ml?  wm

ok w2

Single variable version

We can eliminate variables in favor of a single field, w, to get the analogue to the
classical wave equation. We begin with the divergence of the momentum equations which
gives a diagnostic eqn. for the pressure

0
Vip=—
8zb

which we can use to eliminate P from the vertical momentum equation

0 2 82 2 2
This gives
82
ﬁvzw = —N2V,2Lw (zgw4)

after using the buoyancy equation.



Vorticity version

In the simplest 2D case (z, z), we can write the equation for the y component of the

vorticity, & = gzu — 8‘1 w,

o, 0
ot> Oz
and use the y component of the streamfunction

_8 B 0 -
U=, w=-o-9 = £=V
to find 9
—qu/)_——b
0 8
5=V

Taking another time-derivative of the vorticity equation gives (4) written in terms of ).
Fourier solution

If we have an initial condition w(x,0), we can solve for later times by finding the
transform

w(x,t) = /d3k w(k,t) exp(zk - x)

Substituting in the dynamical equation (4) gives

0? __N2k2+122

= 0%
8t2 k-k

which has solutions like
w(k,t) = w(k,0)exp(—e2(k)t)

(There’s also the negative sign case — determining how much of each we have will depend
on the initial conditions on w and %w. We’ll begin assuming those are set so that we have
energy in only the positive frequency root.) Then

w(x,t) = /d3k w(k, 0) exp(tk - x — 1Q2(k)t)

Demos, Page 3: IGW solutions <k=2,m=1,cp=0,4> <k=1,m=2,cp=0.2> <k=2,m=1,cp=0.4,c
0.18> <k=1,m=2,cp=0.2,cg=0.36,-0.18> <k=2,m=2,cp=0.25,cg=0.18,-0.18>



Phase and group velocities

The phase of the wave is # = k - x — wt, and the rate of movement in the direction
parallel to the wavenumber vector is

00 =k -kcot —wit=0 = 5t[\k\c—w] =0

so that
w

k|

But the packet doesn’t propagate like that at all. To see how it does, let’s suppose
the initial condition has a sharply-peaked spectrum

C

ik, 0) = 39X

€

so that the initial condition represents a large-scale modulation of a small-scale wave

k — ko

w(x,t) = /d3k e 3¢( ) exp(zk - x)

= /d3K #(K) exp(iko - x + 1¢K - x)
= exp(tko - x) / d*K ¢(K) exp(1K - ex)
= A(ex) exp(tko - x)

The time-dependent solution is

k — ko

w(x,t) = /d3k e 3¢( ) exp(tk - x — Q(k)t)

= /d3K d(K) exp(iko - x + 1K - x — 1Q (ko + eK)t)

= exp(tko - x — 1Q(ko)?) /d3K d(K) exp(tK - ex — 1Q(ko + eK)t + 1Q(ko)t)
~ exp(1kg - x — 1Q(ko)t) / d®*K ¢(K) exp(1K - ex — 1K - Vi Q(ko)et)

= A(e[x — Vi t]) exp(tko - x — 282(ko)?)

Thus the envelope propagates at the group velocity

09
i Ok,

cg =V, or ¢

For internal waves, the group velocity can be found from

s N?(R*+0%) Lk + 22
TR+ 2+m? k|2

4



giving

o052 B 2lcm2N2 N of2 B km?
ok = k[ ok |kPVEZ+ 2
and
o0 _ Im? o _  my k2 + 42
o kpVEEEZ T Om ISk
Thus
N

= (km? tm?, —m(k® + £2
Cg |k|3m( m m m( ))

Note that k - ¢, = 0; the group velocity is parallel to the planes of constant phase.
Vertical modes

If N is constant, and the domain is bounded by a bottom and top at z = 0 and z = H,
respectively, we can write
w=W(z,y,t)sin(Mn/H)

and (for M =1)

82 H2 H2

giving

,_ N?K?

Y T 1T K2

with K = kH /.
Note that the phase speed

g1 —1/2
N NH 1 kH
CcC = == J—
[%_,_1@]1/2 Mn M

gives only weak dispersion for long waves dc/c ~ k*H?/M?r?. The long wave speed
decreases for modes with more wiggles in the vertical. = Demos, Page 5: Dispersion
relation <disp rel>




Another view of group velocity

Consider superimposing two waves,
0.5 cos(k1z — wit) + 0.5 cos(kaz — wat)

with ki1 < kg; the result has a “beat-frequency” modulation. The waves will be back in
phase at both their peaks when

2 2 k1 2T
N1 - N2 N— I_
N+ o o — —

To calculate the motion consider the time at which the two peaks catch up with each

other

2T wy 2T wy 21 (ko — k1)
! ]{71 + kl 2 ]{I2 + kg = w1k2 — W2k1

and we see a new maximum constructive interference point at X;. The speed of motion is
therefore
X 1 w1 2m W — W1

T ~ &k kT ky— ke

Demos, Page 6: Two waves <initial> <initial> Demos, Page 6: Two
waves <initial> <evolution> <NK/(1+K*K)>  <NK/(1+K*K)**2>

(Continued on next page.)



Revision of two waves

Assuming that the shorter wave travels more slowly and the two waves start at time
t = 0 being in phase at z = 0, the pattern will repeat exactly when the previous crests
of each of the two waves match up precisely:

25 I I T

20

15

10

-5
-10 -5 0 5 10

Two wave geometry. Solid=sum; dashed=longer, faster; dotted=shorter, slower

Thus we have 9 9
T s
ClT:k_1+ch ) CQT:k—2

We can think of these as simultaneous equations for 1/T" and cg:

+cgT

+27r1
c —==c
I T !
+27r1
c ——=c
I kT 7
solving these gives
o = Cli_:_c2i_71r _ Clkl—Cgkg _ w1 — Wy
9= Tum_x: ky— ks ki— ks



Dispersion of group

If we consider the next order in our expansion for sharply peaked spectra
w =~ exp(1ko - x — 1Q2(ko)t) /d3K d(K) exp(1K - ex — 1K - Vi Q(ko)et) X

0%

2~ K.K.é%t
2 Ok, LY

exp(—1

In a frame moving with the group X = ex — c,et, the changes on a time scale 7 = €%t are
determined by

2
w =~ exp(tko - x — 1Q2(ko)t) /d3K »(K) exp(zK - X) exp(—z1 Gl K,K;T)

2 Ok;0k;
For this we find the amplitude satisfies the Schrodinger equation

9 190 9 9
or - 2 akzakj 8XZ 8Xj

This looks like a diffusion equation (with an imaginary diffusivity) and can be solved in
much the same way. In particular, we can look for Gaussian solutions

w = A(T) exp(—al—j (T)XzXJ)
The result can be seen in the 1D case

0 1 0%Q 02

or"  20k20X%"

Plugging w = A(7) exp(—a(7)X?) into the previous equation and gathering the terms
which are proportional to X2 and to 1 gives

0
—a=-20"a>

ot
%A = —1Q"aA
This has solutions
Qp
«

T 1+ Qi V't

Demos, Page 8: 1D case <packet motion and spread> <amplitude decay>



Energy

We can form an energy equation from the linearized equations

1
2—(u-u):%I{E:—u-VP-i-wb

= -V (uP)+ wb

The last term represents generation of kinetic energy from potential energy (heavy fluid
[b < 0] moving down [w < 0] or light fluid moving up). We can define the available
potential energy here as %bz/N2

01 b2 0
———=—PE=—wb
ot2 N2~ ot Y
so that the change in total energy in a parcel is given by the flux across the boundary of

the parcel uP

0 0

For IGW’s, the energy is

1 2 k2 £2 2 1 1
E=_ (M_,_ w_> B?%sin?0+ ——B%cos% 0

2 w?|k|4 N4 2 N2
= EWSIH 9"‘ imcos 9
1 B2
2 N2
and the flux is just
m mk ml w
F = —— | B*sin®*0
P2 (w|k\2  wlk]? N2> o

which averages to
1 m mk me w
F=— - — | B?
2 [k|? (uflk\2 " wlk]? Nz)
_ 1B? m2kN m2{N _mvVk*+ 2N B2
2N\ VEE L B VR T Bk K[3
=cyk

The energy moves at the group velocity.



Reflection from a sloping surface

Demos, Page 9: Reflection problem <geometry>
Let us consider IGW’s incident on a surface sloped at angle 8 from horizontal. The
boundary condition at the surface z = ztan g is that the normal component of the velocity
must vanish
u-n=-—-usinf+wcosf =0

In terms of the streamfunction, this condition becomes

—sinﬁﬁzp—cosﬁiz/; =—t-Vy=0
0z oz

so that we can simply assume ¥(scosf, ssinf,t) = 0 with s being the distance along the
slope.
We write the solution in terms of an incident wave and a reflected wave

Y = Acos(kz + mz — wt) + A, cos(krx + mpz — wyt)
and apply the boundary condition
Acos(sk -t —wt)+ A, cos(sk, -t —wpt) =0

we see that w, = w, k-t = k,. - t, and A4, = — A in order that the equation above holds for
all s and t.
The geometry is now clear: since the frequencies are the same,

cos(¢y) = cos(¢)

so that the angle of the reflected wavenumber from horizontal is the same as that of the
incident wave; secondly, the projection along the slope must match.

Demos, Page 10: incident/refl <geometry> <group vel> <phi=30,beta=0>
<wavefronts> <phi=30,beta=15> <wavefronts> <phi=30,beta=25> <wavefronts>
<phi=30, beta=45> <wavefronts>

Note that the reflected wavenumber satisfies

K, cos(¢p+ B) = K, cos(¢ — B)

and becomes infinite when ¢ + 8 = 90° — when the reflected wave group velocity is
tangent to the slope. Beyond this critical slope, we satisfy the boundary condition by
using w, = —w and k- t=-k, -t.
Demos, Page 10: large slope <phi=60,beta=15> <wavefronts> <phi=60,beta=45>
<wavefronts> <phi=60,beta=55> <wavefronts> <phi=60,beta=85> <wavefronts>

When the slope is shallow, a wave can focus between the surface and the bottom and
propagate into the corner, with its scale becoming smaller and smaller. Demos, Page
10: focus <incident> <1st refl> <2nd refl> <3rd refl> <4th
refl> <bth refl> <6th refl> <7th refl>
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Generation by flow over topography

One mechanism for creating internal gravity wave is flow over topography. We’ll
consider the simple case with zonal flow at a sinusoidal topography at z = hg cos(kz). The
equations of motion will be linearized assuming the mean flow, U, is much larger than the
wave flows u. 5

0
_ U—u=-VP 5
tu-l— u = + bz

V-u=0
0 0
—b+U_ —~b+wN?=0
o ae Y
The dispersion relation is the same, except we replace w by w — kU
Nk

w—kU =+—
k|

For the steady response w = 0, we will need to use the minus sign.

Nk
w=kU — 7=
K|

The condition at the bottom is, again, no normal flow.

z—Vh
Ux+u)-n=Ux+u) ——==0
( ) B = ) VA
or

0
(U—I—u)ah—w at  z=h(z,y)

(We can find the normal by thinking about a function F(z,y,2) = z — h(z,y); its three-
dimensional gradient is perpendicular to the surfaces of constant F', in particular the one
at F' = 0 which represents the boundary.) This linearizes to

0
w—Ua—xh at z=0

when the slope and the net height change is small. This can also be written as

Y(x,0,t) + Uh(z,y) =0

11



Steady solution [short scales]

For a steady solution, we have

2
\/k2+mzzg or mZZN——k2

U U?

If the topographic scale is short compared to U/N, the m? will be negative so that if

= \/k? — N2JUZ then

,lp — —Uh() %(ezkwqi'rhz)

We must choose the negative sign so that the disturbance decays with height

1 = —Uhg cos(kx) exp(—\/m 2)

Demos, Page 11: short scales <Uk/N=1.01> <Uk/N=1.1> gwtop2.png <Uk/N=1.5>

<Uk/N=2>
Long scales

If k> < N?/U? then m is real and our solution looks like
,lp — —Uho %(ezkmizmz)

and we must decide which sign to use (or have some contribution from each). We shall
discuss a number of ways of resolving the issue.

Demos, Page 12: 1long scales <Uk/N=0.99>  <Uk/N=0.9>  <Uk/N=0.8>
<Uk/N=0.7>

GROUP VELOCITY: Since the topography is the source of the waves, we would expect
the vertical component of ¢4 to be positive. This means that if we suddenly add or eliminate
the topography, the disturbance in the wave field would propagate upwards. Therefore

O [y Nk ]_  Nkm
om V2 tm2] (k21 m2)i

The positive sign is the correct one, so that

¢ = —Uhgcos(kx + /N2 /U? — k? z)

12



ENERGY FLux: For these 2-D motions, we can write the average (as in zonal average)
vertical energy flux as
— oy opP
wP=——P=19_—
Ox 4 Oz

and we expect it to be positive. Using the zonal momentum equation gives

021 B
otoz

0%y

0% oY Oy
0rdz +U

. 5%
v ¥ otoz " ox 0z

Uy

—1

For steady flow with ¢ = —Uhg cos(kz £ mz), we have
—5 L 3,9
again showing the plus sign to be the desired one.

DAMPING: Another approach is to add damping to the equations so that even the
vertically wavy mode decays and reject any growing solution. We take

0 0
- “u=_VP 5
8tu+U8:1:u VP + bz — eu
V-u=0
0 0 9
Il il — —¢b
8tb+U8mb+wN €
We now have
N2k2 N2
2 2 2
= - = — ]{)
(1hU +e) k2 + m?2 m U2(1 —1e/kU)?
The imaginary part of m is
Sy = LN
— R(m) kU3

so that vertically decaying solutions &(m) > 0 require R(m) > 0 as before.

13



INITIAL VALUE PROBLEM: Finally, we can look at what happens if we suddenly turn
the flow or the topography on. Using

9 ot 2 nr2

with the initial and boundary conditions
P(z,00=0 , ¥(0,t)=-Uho , ¢(o0,t)=0

The Laplace transformed problem gives the same z structure equation as in the damped

system
8_2 o k2 wT - _ N2 /LPT
022 (U2 — 2usU/k — s2/k?)

with
YT (0,5) = ~Uho/s , 47 (c0,8)=0

Again the positive root is the proper one

N2

1
T= 211/2
= _Uha= ok
7!) U 08eXp(Z[(U2_2ZSU/k_Sz/k2) ] Z)
The inverse transform
00 1 N2
== — _ 12]1/2,) st
TJ) Uho ./;zoo S eXP(Z [(U2 — 27,SU/]{) — 82/k2) ] 2)6

is dominated by the singularity at s = 0; for large time, we recover the standing wave
solution. Demos, Page 14: IGW data <Cloud patterns> <Breaking
waves> <Appalacian> <Surface slicks> <Internal tides> <Georges
Bank>  <Northern Oregon>
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The Nonlinear Problem

We can also look at the nonlinear problem in simple 2-D cases. The steady equations

u-Vq:—%b

u-V(b+N?2) =0

can be solved by noting that u- V¢ = 0 implies ¢ = ®(¢p) — the advected property
is constant along streamlines, since the parcels of fluid move along the streamlines in
steady flows. The streamfunction here includes both the mean flow and the fluctuations

¥ = Uz + ¢'(x). Therefore
N?
N2z +V/(x) = BUz +¢'(x)) = 57 (Uz + )

Uniqueness could be a problem, of course. In any case, we’ll take

N2
b = FW
The vorticity equation then tells us that
u-Vq:wN72 = u-V(q—NFZz)zo
so that 2 e
V2! Nk QUz+ ") —W(Uz + ")
or )
=Ny

with the boundary conditions
' (z,h) +Uh=0 , ¢ -0 or radiation condition

Note that the linear solution is a perfectly good one — we just have to find the topography
that matches it!

Uhg cos(kz) exp(—mh) = Uh or  hgcos(kz) = hexp(mh)

ho cos(kx + mh(z)) = h(x)

Demos, Page 15: topographies <Uk/N=1.001> <Uk/N=1.01> <Uk/N=1.05>
<Uk/N=1.07> <Uk/N=1.08> <Uk/N=0.99> <Uk/N=0.9> <Uk/N=0.5> <Uk/N=0.2>

15



WKB and modes

We will now consider propagation and vertical modes in the case where the Brunt-
Vaisala frequency varies with z. The normal mode problem

2
%V2w+N2V,2lw:0 , w(0)=w(H)=0

can be separated as w = W (z) exp(1[kz + £y — wt]), and the eigenvalue problem becomes

82 N2
@W—kiWJrﬁki =0 , W(O)=W(H)=0

with ki = k% + ¢2. This is a Sturm-Liouville problem with eigenvalue A = 1/w?. For a
given N?(z) and k3, we will find an infinite set of eigenfunctions with increasing A’s and
therefore decreasing frequencies. In the case of constant N, we have

k2 H?
k2 H? + M27?

W =sin(Mnz/H) w:N\/

When N is not constant, we can look for approximate solutions
W ~ A(ez) sin(e 10 (ez))

so that
02 0 0 0
—W = €e?A"sin — + €[240' + A0"] cos — — AH"?sin -
072 € € €
The lowest order problem gives
N2
0% =k} { 1}

w2

z /Nz
and an eigenvalue relationship
1 7 N2
Mn = |ky|H — — -1
™ = [kl H/O w?

or

The amplitude satisfies

240" + A" =0 = 2

16



so that

1 1/2 N2 —1/4
A= const=2 = const|kp|"/? [— — 1]
o' w?

— the amplitude is largest in the regions of small N and slowly changing phase. This
makes sense since the energy flux is proportional to the vertical wavenumber times the
amplitude squared.

The results above assume that w is smaller than the minimum value of N so that the
solution remains sinusoidal. When that is not the case, the waves will have a turning point
and will be exponentially damped in the region where w > N.

Demos, Page 16: modes <N squared> <kh=0.01> <kh=0.1> <kh=1>
<kh=10> <disp rel> <wkb disp rel>

More general WKB form

We now consider propagation in an inhomogeneous medium. The waves will be locally
sinusoidal
w = A(x,t) exp(:0(x,t))

with the implicit assumption that the gradients of 8 are large (we could put in the € factors
as before). Locally, we can identify the effective wavenumber and frequency in terms of
the derivatives of 6: 5

k: = ——
Vo , w 81,‘0

To calculate the evolution of the phase, we note that the largest terms in the dynamical
equation will give the dispersion relation

2
(%) 176 = 719102 =0

where V, is the horizontal gradient (2, %, 0) (in Cartesian coordinates). From this, we
obtain an evolution equation for 6

= _Q(VO. x.
ot V0] (VO,x,1)

This equation implies that the wavenumbers and frequency evolve as the wave packet
moves through the medium. To see this, consider the case N = N(z) and suppose that
the horizontal and vertical wavenumbers are initially constant

0(z,z,0) = kox + moz

At time zero, we have

ko

17



so that
ko

VEE+m}

O(x, z,0t) = koxr + moz — N(2) ot

and the vertical wavenumber is now

0 ko
—0 =my — N'(2) ———0t
RN T

giving a new frequency as well. Likewise, even with constant N, if %9 is not constant,

the value of %9 will also be non-uniform. Therefore the vertical wavenumber changes. To
see this more precisely, we can take a z derivative of the evolution equation to find

O,__0020, o 0, 00
ot 00,0z ° 0z 29z % 0z

Using 2 5,0 = 0. In the internal gravity wave case

0% = N O e N
In general, we find
%Vzﬂ + (cg - V)V = Dyb; = —V,;Q
Likewise, we note that % at time 6t will be different from 2 E at time 0, since it will

be evaluated using the new vertical wavenumber.

0 00 00 0
EE—FCQ-VE—DQ& —%Q

Finally, we look at the amplitude equation, which comes from the first order terms in
(10 + %)g(zve +V)?2A+ (0VR0 + Vi)2AN? =0
This gives
(|v9|2A)+ (9t|V0|2A)+92V0 VA+02V-(AVO) = V18-V (N?A) =V}, - (N?AV}1,0)

the terms involving derivatives of A are

DA
2et|v0\2 -+ 20, V0|2 f%gﬁ VA — 20,V févglz VA =20,|V0|°D,A
using the dispersion relation
V0|2
N2 |
%= N e

18



and the definition of the group velocity, which gives

o [ YO Vi
~ U LveR T (VaeP

The amplitude equation becomes

20,|VO|?D,A + A [29t—\v9|2+ |v0\2 +02V20 Vi -VipN? -V, - (N2vh9)] =
Multiplying by 3 A* and adding the conjugate gives

0,|V0)2D,4|A?+| A2 [24% |Vo|? + |v9|289t +602V2%0 — V0 - VLN2 — V), - (N2vh9)] =0

Next we manipulate the divergence terms

0:Vo
Vo2
=V - (0:,|V0|°cy) — VO - VO;

0,V 1,0
Vo

02V20 — V(N?Vp0) =V - <9t|v9\2 — 0;|V0|? ) — V0 -V6?

Combining these with the first two terms gives
zet Vo +|ve\2‘99t+92v20 V- (N2V,0 = et—\ve\ D, (64 V6|2)+6,|VO[2V -, V-V 62

= Dg(Ht\VH\z) + 6,/ V0>V - Cg
Finally, we use

1
Vro]?

Vo

—2N - ViN =2NV,0 -
Vno -V, Vi, V0

—— DVl = —0;|V0|> == Dy|Vi0|?

Putting these all together gives

0:|VO>Dy|A|? + |A|* | Dy6:|VO|> — 0,|V0|? =D, | V0> + 6| V0|’V - c,| =0

Vi 9|2

Multiply everything by 1/6;|V0|?|A|?, put in terms of logs, combine the terms, and undo

the logs; we find
VOl AP Lo, [Vo[*|A]°
Va8 Vi8]

If we substitute the definition of energy from the lowest order relationships

D,0,

V-.c,=0

10,u = —1VOp + bz
VO-u=0
10:b+ wN? =0
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giving
Vo

E=
V182

|AJ?

Thus we arrive at the form

%@E+v (cy0iE) = 0

Using D,6; = 0 (N? independent of time) tells us that the energy in the wave changes by
divervences of the energy flux

9
B4V (c,B) =0

Obviously, this is a non-trivial process; for the internal gravity wave problem, we can
take a simpler approach, which is to work directly from the equations of motion assuming
all the variables have a WKB form:

b = b(x, t)e’e(x’t) + b*(x, t)e"e(x’t)
Then the equations become
10:u + %u = —1PVO - VP + bz
Vo-u+V-u=0

0
0:b+ —b+wN? =
10, +8t + w 0

The kinetic energy, averaged over the rapidly varying phase is

1 1
5 <(u619(x ,t) + u*e —10(x, t)) > §<u . ue2z€(x,t) +2u-u* +u*- u*e—219(x,t))2> —u-u*

so that we can form the KE eqn. by dotting the first equation with u* and adding the
conjugate
0
ETR u* = —(Pu*-Vf—-P'u-Vl)—u*-VP—u-VP* +w*b+ wb*
=—-P-Vu*"—P*'V-u—u*"-VP—u-VP*"+w*b+ wb*
—V - (uP*+u*P) +w*b + wb*
(using the continuity equation). Multiplying the buoyancy equation by b* and adding the
conjugate gives

2bb* + (wb* + w*b)N? =0

ot
or, in terms of the available potential energy bb*/N? (assuming N? is time-independent),
0 bb* « .
9 N2 +wb* +w*h=0
From these, we find
0
EE = -V . (uP*+u*P)
or, using the equipartition of energy at the lowest order (all that’s now needed)
0
EE =-V-(uP*"+u'P)=-V-(cy,E)
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