Surface-forced waves
Suppose we specify the surface pressure

P = Pycos(kz — wt) = R[Poet*z—)]

what is the structure and the nature of the disturbances below?
We can derive an equation for the pressure in the water column using
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Eliminating w from the last two and taking a z derivative gives
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which can also be written as 52
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as before. The pressure will have the same horizontal and temporal structure as the forcing
P = P(Z)ez(kw—wt)

and the vertical structure satisfies
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The pressure has a vertical structure like exp(+2mz) with
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(which is equivalent to our standard dispersion relation
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but solved for m rather than w).



Trapped disturbances

When w > N, we have imaginary vertical wavenumbers M = m, so that the solutions
are exponentially growing or decaying with depth P(z) = Pyexp(£Mz). Since the forcing
is at the surface, we have to choose the solutions which decay

P = R[PyeMzekr=wt] = Py cos(kz — wt)eM?

The solutions are in phase with depth and decay at a rate
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Propagating disturbances

When w < N, the forcing is in the range of frequencies for which free waves exist, and
m is real. To resolve which sign we use, we argue that the energy should be propagating
downwards, away from the source, so that
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Thus, we must choose the positive sign for m, and the solution becomes
P = R[Pyettketmz=wt)] = P cos(kz + mz — wt)

The solutions now change phase with depth and flux energy deep into the water.



