Rotating Shallow-Water Waves

We now consider the effects of rotation and boundaries on fluids obeying (in the
horizontal) the linearized shallow-water equations
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where u and V are horizontal vectors/ operators.
Plane waves
For the simplest case, we take all fields proportional to exp(zk - x — wwt) to find
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which implies
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which has three roots, w = 0 and
w® = f* + gH|k[?

which is the generalization of the long gravity wave dispersion relation. In the presence of
rotation, the waves become dispersive, with
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These can be simplified by using the deformation radius \/gH/f as a length scale
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Note that the shallow water equations will only be applicable for
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for a 4000m deep ocean.



Rotating shallow water waves
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Dispersion relation for rotating plane waves d

The w = 0 root is non-trivial; to see this, let us look at the equations in vorticity/

divergence form. If ( =z - (V x u) = g—z — ‘3—;‘ and D = -Vu, then
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Eliminating D from the first and third equation gives
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The (linearized) potential vorticity ¢ = (C —f g%) is conserved. This equation implies

either the frequency is zero and the potential vorticity is not, or vice-versa. The zero-
frequency waves correspond to D = 0, ( +V?¢/ f and are geostrophically balanced. When
f varies, these turn into Rossby waves.

If we recast the divergence equation in terms of ¢
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and use the conservation of mass equation, we find
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For the gravity waves with no PV signal,
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and we recover the dispersion relation above.
Adjustment

If we consider the initial value problem, we can specify the three fields, or, alterna-
tively, we can specify ¢(x), ¢(x,0) = ¢o(x), and % (x,0) = ¢¢o(x). Since g remains
unchanged, we can split the pressure up into the geostrophic part and the gravity wave
part

¢ = ¢g(X) + du(x,1)
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$uw(x,0) = do(x) = dg(x) o duw(x,0) = dio(x)

The equation for the geostrophic pressure shows that the influence of a localized potential
vorticity anomaly spreads out over a scale Ry = /gH/f called the “deformation radius.”
Le., if ¢ = ¢od(z) (independent of y), the geostophic pressure is
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Gravity waves in a channel

Now we consider waves in a channel 0 < y < W. In that case, we must apply the
boundary conditions v = 0 at y = 0, W. For the non-rotating case, the y-momentum
equation implies 6%(]5 = 0 at the boundaries (or, more generally, V¢-n = 0). The solutions

to the f = 0 version of (2) are

with

and

=0,
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w? = gH(K* + £?)
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omega*W/sqrt(gH) for modes 0 to 5
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The rotating case is more complex. If we stick with equation (2), we can use the two
momentum equations with v = 0 to show that
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For waves with ¢ = ®(y) exp(1kz — wt), we must satisfy
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We can look for solutions ® = cos(£y + 0); the dispersion relation is then the same as for
plane waves, but the boundary conditions imply

£sinf = % cosf and Lsin({W +0) = % cos(U{W +0) = tan(f) = tan({W + 0)
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Thus /W is still an integer multiple of m. However, the ¢ = 0 solution is no longer
satisfactory, since it makes ® constant, which will not be consistent with the boundary
conditions.

The dispersion relation
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n-m
W= f*+ gH(K* + %) = f* + gH(k* + T77)

now correspond to modes with the same cross channel wavelength as before, but which no
longer have their maxima at the channel walls:
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omega*W/sqrt(gH) for modes 1 to 5, fW/sqrt(gH)=5
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A sample waveform for kW =7, {W =7, f/\/(gH) =51is
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Kelvin waves

But we can also look for exponential solutions; we can see that

® = exp (—%y)

clearly satisfies the boundary conditions. Starting with the general case Ae®Y + Be™*Y
leads to the conclusion that the solution above is the only correct one. Putting this into
the equation for ® gives

gH = f2 4+ gHEK? — W?
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which has the solutions
w? :ng2 , w2:f2

The latter is spurious; if we examine the momentum equations with w = f, we find
U = %qﬁ since the other solution v = z%qﬁ will not satisfy the boundary conditions. The

mass equation then implies f2 = gHk? which is not generally correct. Thus, we find that
the £ = 0 mode is replaced by one which decays across the channel as

P = exp (——;Hy) = exp (—Ri)
vV d
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and has frequency

These non-dispersive

waves are called Kelvin waves.

w=+/gHEk
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omega*W/sqrt(gH) for modes 0 to 5, fW/sqrt(gH)=5
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