Surface gravity waves

For a homogeneous layer of fluid with a free surface at z = n(z,y,t) and flat bottom
at z = —H, we rewrite the pressure as p = —pogz + poP(z,y, 2,t) and the equations of
motion become
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IRROTATIONAL FLOW:

When the vorticity { = V x u is initially zero, it remains zero. We can see this from
the vorticity equation derived by taking the curl of the momentum equation
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Therefore, if {(x,0) = 0, the vorticity will remain zero thereafter. In that case, the velocity
is given by the gradient of a potential function

u=-Vo¢

We can define a scalar function

) = 60x) = [ u-a
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with the integral taken along a path joining the two points. The integral is path-independent,
since the integral along a closed path § u-d¢ = 0 by Stokes’ theorem. Thus ¢ with this
definition is indeed a scalar function, and its derivatives with respect to x give the velocity
components.

The equations in the interior of the fluid simplify to
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The first equation tells us how the pressure varies given the potential; it’s the second
equation that determines the structure of the field. The wave part of the dynamics doesn’t

appear obvious in Laplace’s equation; instead it shows up in the boundary conditions.
BOUNDARY CONDITIONS:

The lower boundary condition is straightforward: it states that the normal component
of velocity vanishes
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Note that this has a broader implication. It implies that a particle of fluid on the bottom
can move along the bottom but not off of it. In molecular terms, the condition simply
states that the mean upward and downward velcotoes are equal. The fact that molecules
can migrate away from the surface (and tracer material as well) is connected to the diffusive
part of the dynamics, not the molecular mean velocity u.

At the top surface, z = n(z,y,t), we apply the same argument that particles remain
at the interface; however, we must now account for the motion of the interface as well. We
find
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Finally, we apply a dynamic condition at the surface that the pressure of the fluid must
equal the pressure of the air above

Pa = —pogn + poP(z,y,n,t) = P(z,y,n,t) = gn(z,y,t) + pa/po

Using the Bernouilli equation allows us to write this condition in terms of the potential
and the surface elevation
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We could combine the kinematic and dynamic conditions to express the upper boundary
condition solely in terms of ¢; however, we will leave the two fields explicitly.
LINEARIZED EQNS:

We can linearize the equations by assuming that velocities are small compared to the
phase speed and chenges in elevation are small compared tot he wavelength or the depth
of the fluid. Linearization alters the upper boundary conditions in both the obvious way
— dropping the |V¢|? and V¢ - Vn terms — and by allowing the fields to be evaluated
at z = 0 rather than z = 7. Since ¢,(z,y,1n,t) =~ ¢,(z,y,0,t) + nd,z(x,y,0,t) + ..., the
correction terms from evaluaing at n rather than 0 are indeed quadratic or higher order in
the strength of the fields.

With these approximations, the equations become
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DISPERSION RELATION:



For p, = 0 and soutions which are plane waves in the horizontal, we have
n = no exp(ek - x — wwt)

so that
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whic, together with the lower bc. and Laplace’s eqn., implies
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with K = |k|. The kinematic equation now tells us
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giving the dispersion relationship
w? = gK tanh(K H)

Short wave limit: For short waves, KH >> 1= tanh(KH) =1 and

g /9
K =/=
g y C K K

The group velocity is half the phase speed.
Long wave limit: For long waves, KH << 1 = tanh(KH) = KH and
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The group velocity is equal to the phase speed.



Evolution of an initial disturbance

We shall now look at the evolution of an intial compact disturbance

n(x,0)

To see exactly what we need to specify, let’s reformulate the equations a bit. From the
momentum equations
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and the continuity equation
V-u=0

we can see that the pressure also satisfies Laplace’s equation
ViP =0
with an upper boundary condition
P=gn at 2z=0

The lower boundary condition arises from

The kinematic condition at the upper boundary becomes
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If we Fourier-analyze the surface elevation

n(z,t) = //dk n(k,t) exp(zk - x)
and the pressure
P(x,z,t) = //dk P(k, z,t) exp(ik - z)

with K = |k|, we have X
P(k,0,1)g7(k, )

and, from the interior equation
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Applying the lower boundary condition gives
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and the kinematic condition gives
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This equation makes it clear that we need two conditions at ¢ = 0, one on 7 itself and one
on w = %n. Given these, we can write the general solution

n(x, t) = / dk 7’7+ (k)ezk-x_zQ(k)t + ﬁ— (k)ezk.x_HQ(k)t

with the first representing waves propagating in the positive k direction and the second
representing waves moving in the opposite direction. These are related to the initial
conditions by

ﬁ(k7 0) = /ﬁ-f- + ﬁ— 3 'f)t (ka 0) = _ZQ(fH— - ﬁ—)

Note: we can also write down the radially symmetric solutions in the case with zero
initial vertical velocity, we have

n(rt) = /0 " kdk a(k)Jo(kr) cos(Q(k)E)

ONE-D CASE:

We shall look at the one-dimensional case for simplicity. Furthermore, we can look at
only the part corresponding to eastward propagation. Thus, we seek an approximation to

n= /dk 77+ (k)ezkm—zQ(k)t

Consider large x and t but with ratio order 1. We can do this by setting z = Ut and take
the limit for large ¢. Then
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The stationary phase method tells us that most of the contribution to the integral comes
from the vicinity of ks where “6'(ks) = 0. Elsewhere, the phase changes rapidly (for large
t) and the integrand oscillates rapidly with zero net contribution. Alternatively we can
move into the complex k plane and see that there is a saddle point in the phase at kg; if we



pass through this saddle point at a 45° angle, the argument of the exponential is strongly
peaked. Therefore the main contribution comes from near the saddle point cq4(ks) = U
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Treating the last integral as a probability integral with variance \/—1/1t"0" (k) gives
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An observer moving at speed U sees waves with wavenumber ks and frequency Q(ks) where
cq(ks) = U; the wavenumber and frequency do not change for this observer; the amplitude
does decrease as t—1/2.

On the other hand, an observer at a fixed x corresponds to U decreasing with time
and therefore kg increasing; the wavelength and period get shorter and shorter as time
increases. At fixed t, U increases with x, so that the longer waves appear at the front of
the disturbance.

Since the details of the dispersion relation did not really enter, the result holds for
any type of dispersive waves propagating in one direction; although we do need to watch
out for issues such as the sign of #” etc. In two dimensions, the waves decay more rapidly
~ t~1 (applying a similar asymptotic expansion to the Bessel function solution can show
this).
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Imhomogeneous media - wave action

We shall consider long waves embedded in a medium with variable depth H and
mean flows u (all vectors, gradient,... are horizontal for this section). The shallow water
equations are

% = gn+ %\VW
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We’ll assume that the background is a large-scale flow (X, T') and depth field H(X) +

7(X,T) [which we call H(X,T)]. These vary only on space and time scales which are long

compared to the wave scales and periods (X = ex, T' = et). The perturbations satisfy

D¢ = gn’
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with D = % —-V¢-V= % +u - V. If we now think of the waves as having structure
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(meaning the real part, of course), an operation such as D7’ becomes
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where Dy is the algebraic quantity
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and D, is the operator
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Likewise the graidient operator will pick up two terms, one from the phase and one from
the slow variations
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Our equations now become
1Do"¢p+eDi"p=g"n
Do n+eD1 n+enV-u= (VO +eV) - [HoVO + V) ¢

and we can expand
m=n+em+... etc

At lowest order, we get the local wave equations
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Z_D()’I] = —H|V0|2¢

which gives the dispersion relation
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Here @ is the intrinsic frequency (that for waves in a medium at rest) and the frequency
w has both an advective and a wave contribution

w=u-Vo+o
The amplitude is determined by the first order equations

1Dog1 + D1¢ = gm
1Dom + Din+nV -t = —H|V0*¢1 +:HVO - V¢ + 1V - [HpV)

Again, we multiply the first equation by 2Dy and the second by g and add. The 7; and ¢
terms cancel (using the dispersion relation) and we are left with

1DoD1¢p + D1gn+ gnV -u = 1gHVO - V¢ + 1V - [gHPV )

We substitute the lowest order expression gn = 1Dy¢ and divide by 2 to get the equation
for the evolution of the amplitude

DoD1¢ + D1(Do¢) + Do¢pV -u = gHVO -V + V - [gHPpV )

or
2DyD1¢ — 2gHVO - V¢ + ¢ [D1Dyg + DoV -u—V - (9gHVE)| =0

To put this in terms of the energy,
E/g = 5gBINOP|6P + solnl® = gHINOPI6P + Solnl> = 22l4f?
we multiply the equation by %d)* and add the conjugate to get
DoD1|¢|*> — gHVO - V|¢|* + |¢|* [D1Do + DoV -u — V - (JHV0)] = 0
Combining the first and third terms and the second and fifth gives
Dy(|¢*) + V- [gHVO|¢*] + |0V - T =0

or
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But from the equation for the frequency, we find the group velocity is
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and our equation for the so-called “wave action” A = @|¢|? = E/gl becomes

0

Action changes locally by fluxing in or out at the group velocity. Note that it is the energy
divided by the intrinsic frequency which can now be balanced out, not the energy itself:

E E
QT+V(CQT>:O
w

EXAMPLES:

For a first example, consider waves travelling into shallow water, H = H(z). We'll
start with the waves impinging at an angle with wavenumber k. The equations for changes
along a ray
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imply that the frequency and y-wavenumber remain fixed. Therefore, when the wave
reached position X, its wavenumber is
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The ray itself satisfies the equation

aX
dt

from which we conclude that
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For H(xz) = Hpexp(—vyx), we have
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But the essential character is clear from the expressions for the wavenumber and the
trajectories: as the depth decreases, the cross-shelf wavenumber increases so that the
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waves are short and align more parallel with the coast. The trajectory slope decreases,
again indicating a turning until the waves are propagating perpendicular to the coast.
Since the intrinisc frequency is just w, and it’s fixed, the energy satisfies

0 gE 0
Y E+e¢,-VE=—-EV-c,=—2— " (Hk
5 +cy-V V¢, - 81:( )

As the depth gets small, the group velocity behaves as v H so that the fluxes are convergent
and the energy density increases.
If we add an along-shore current v(z), the dispersion relation becomes

w=vl++/gH(x)K

and w and /£ are still invariant along the trajectories. If v(x) exceeds \/gHy, we will see
reflection of some waves back off-shore. Otherwise if the along-shore velocity reahes some
limit as the water shoals, K will still increase as H~ /2 so the waves still become parallel
to the shore. However, the intrinsic frequency is now @w = w — v£ and decreases as the
velocity increases. Thus the increases in wave action associated with the convergence of
¢, will not be entirely reflected in the energy F = wA.

Ship waves
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