Shallow-water or long waves

For surface gravity waves, we can simplify the equations for the case of long waves (or
shallow-water waves) from either the potential or the original momentum equations.

Potential

Our basic nonlinear equations in the case where the bottom depth varies H = Hy +
h(x,t) become
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If we nondimensionalize z by Hy, x,y by L, n by no, t by L/\/gHy, h by ho and ¢ by
gnoL/v/gHo, we get

0%¢

552 +8°V2g=0
20h 2
€no E—eheé V¢-Vh=c¢€p, at z= -1+ e h(x,t)
20N 2
0 a—é eVo-Vn=—¢, at z=en(x,t)
¢ €1 (0¢)\> ) B
5 —77-1-522 <8z> +€|Vio|© at z=en

with 6 = Hy/L, € = n9/Hy, and €, = ho/Hy. For the long-wave limit, we take 62 << 1
and €, e, ~ 1 (at least by comparison). Then the lowest order equations tell us that
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for which the solution is ¢ = ®(x,y,t). This is consistent with the synamic equation also.
At the next order (62), we find
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Integrating Poisson’s equation in z and appliying the bounday conditions gives the mass
conservation equation
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with the nondimensional depth of the fluid being H = 1+ e+ eph. The dynamic equation
is
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If we look at linear, flat-bottom waves h = 0, € << 1 (but now requiring 62 << € << 1),
we have
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giving the nondimensional wave equation
62

wn = szln

From basic equations

For rotating stratified flow, we have
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From the momentum equations, we can form a vorticity equation (Cartesian form)
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with Z = ¢ + fz. The flow can be irrotational when f = 0 and b = 0: a non-rotating,
constant density fluid.



Hydrostatic

If L >> Hy, then the continuity equation implies w ~ %

z and y components of ¢ are order 62 compared to the others:

u;, and the w terms in the
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so that the vorticity in the momentum equations is replaced by ¢, = V X u. Likewise
the w? term in the Bernouilli function is order 42 compared to the others. Finally, if
P ~UL/T then
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Dropping all the 62 terms gives
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Note that vertical advection is still significant:
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In conventional form, we have
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Homogeneous fluid

In this case, if the horizontal vorticities are zero initially, they will remain so; i.e. at
time 0
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The vertical momentum equation implies %P = 0 and the continuity equation tells us
that %w is independent of depth so that

0 w(n(x,t)) —w(—H(x,t)) 1 0

= — = V)(H
oz " H(x,t) + n(x,t) H+n(8t+uh V)H +n)

Finally, we note that the pressure at the surface is
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where p, is the atmospheric pressure. Thus
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and our equations become
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These are the “shallow water equations”
Irrotational case

When f =0, (3 will also stay zero, and we can use
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and the momentum equations give
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