Vertical structure and the WKB approximation

Vertical structure
In the presence of a basic state shear flow, U(y,§), our QG equations for the waves
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(the Rayleigh equation as extended) with
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The boundary equations are tricky, however. If U is not zero at the bottom, then we will
have pressure gradients along the surface so the the surface coordinate, £ (y) will be a
function of y. The condition that the bottom be at geopotential 0 becomes
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Taking a y derivative and using the geostrophic relation gives
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where U, and b, are the surface values of velocity and buoyancy. The linearized boundary
conditions become
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Multiplying the second equation by —b, and substituting from the first (and the equation
for the basic gradient of the surface coord.) gives
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We combine this with the buoyancy equation
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Simple modes

For the purpose of examining simple modes, we shall assume the surface velocity Us
vanishes. Then we can take {; = 0. We also take the vertical shear to be zero at the
ground so that the surface density is constant and by = g. Our boundary condition is now
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We shall take the isothermal basic state so that
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and look for solutions with 1 = e£/2#s¥ which implies
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Our interior equation simplifies to
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under the assumption that c is less than the minimum of U (or greater than the maximum)
with
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The lower boundary condition is
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In the absence of flow, we have
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Flow

In the presence of flow can we have more than one mode? Given a U(§) profiles, we
can integrate (1) starting from the initial conditions ¥(0) = 1, 2 V¥ = —x and vary ¢ until
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For s < N23/f?, we can take ¢ < 0 so that the first term is positive but becomes small
in the upper atmosphere, while the second and third terms are negative. Thus we have
sinusoidal solutions in the lower atmosphere where I'(£) is positive and exponentially decays
solutions at height where I' becomes negative. As long as the sinusoidal range is big enough,
we should be able to find several modes.

WKB

We can look first for trapped mode solutions to (1) with ' > 0 everywhere using a
WKB form. We let

U = A(§) exp(-0(£))
giving
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Taking the presumed largest terms to balance gives
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The next order terms give us the structure of A, but that isn’r really necessary here. The
lower boundary condition gives, to the first approximation,
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To solve (1) approximately using WKB for the other modes, we must deal with the
turning point at { = & where I'(§y) = 0 (although we don’t know where exactly that is
until we determine c). Below &y, we can take

U = A(£) cos ()



giving
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The WKB approximation involves dropping the A” term; this gives
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The lower boundary condition to lowest order gives
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As we approach the turning point, A blows up (but very slowly); the solution looks like

F(0)1/4 /&0 3
U="_cos |6+ F1/2+/ ri/2
INCI A £

Expanding the last term using I'(§) ~ —|I"(&0)[(€ — &o) gives
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But the solution isn’t singular at the turning point; instead, we must look for solutions
in the vicinity of £y and use these to match between the solution below and the decaying
solutions (like those considered previously) above. In the vicinity of the turning point, the
equation looks approximately like
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The solutions to this are Airy functions which are well-behaved at the turning point,
become sinusoidal for £ < &y and decay exponentially for £ > &:

U = Ai (|r’(£o)|1/3[§ = 50])

The asymptotic form of this is
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Matching these gives us a second condition
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Le., given k£ and a guess of ¢, we know I' and hence &,. Evaluating the integral and
substituting in (5) gives us a test function; we can vary c¢ until it’s zero.

The following figure shows the difference between the Lh.s. and r.h.s. of (5) as ¢/ I,
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varies for a given kH,N/f = 1 and s/ ]}f—; = 0.1 We can then search in the vicinities of
the zeros to find the speeds.

LHS - RHS

Mismatch in (5) vs. ¢ scaled by the characteristic Rossby wave speed BN2H?2/ f2.
The eigenvalues are where ¢ values for which the function is zero.



The next figure compares the speeds from the WKB analysis and from a direct
shooting-method solution to (1) and (2). The WKB analysis (trading off numerical for
analytical complexity!) works very well.

Trapped modes
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Numerical (solid) and WKB (boxes) estimates of phase speeds for first three
modes (the gravest being the one which propagates most rapidly).



The last figure shows the first three modes from the numerical solution for the pa-

rameters above.
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Modal structure ¥(¢) for the first three modes at kH,N/f =1 and s/ﬁ]}[—; =0.1
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