
4. Circulation 

A key integral conservation property of fluids is the circulation. For convenience, 

we derive Kelvin’s circulation theorem in an inertial coordinate system and later 

transform back to Earth coordinates. 

In inertial coordinates, the vector form of the momentum equation may be 

written 

dV 
= −α∇p − gk̂ + F, (4.1)

dt 

where k̂ is the unit vector in the z direction and F represents the vector frictional 

acceleration. 

Now define a material curve that, however, is constrained to lie at all times on 

a surface along which some state variable, which we shall refer to for now as s, is  

a constant. (A state variable is a variable that can be expressed as a function of 

temperature and pressure.) The picture we have in mind is shown in Figure 3.1. 
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The arrows represent the projection of the velocity vector onto the s surface, 

and the curve is a material curve in the specific sense that each point on the curve 

moves with the vector velocity, projected onto the s surface, at that point. 

Now the circulation is defined as 

C ≡ V · dl, (4.2) 

where dl is an incremental length along the curve and V is the vector velocity. The 

integral is a closed integral around the curve. Differentiation of (4.2) with respect 

to this gives 

dC dV dl 
= · dl + V · . (4.3)

dt dt dt 

Since the curve is a material curve, 

dl 
= dV,

dt 

so the integrand of the last term in (4.3) can be written as a perfect derivative and 

so the term itself vanishes. Thus 

dC dV 
= · dl,

dt dt 

and substituting (4.1) results in 

dC 
= [−α∇p + F] · dl. (4.4)

dt 

The gravity term vanishes because it can be expressed as the derivative of a poten­

tial, and so vanishes when integrated on a closed curve. 
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Now since α is a state variable (neglecting its dependence on water vapor or, 

in the ocean, salinity, for the time being), it can be written as a function of s and 

p: 

α = α(s, p), 

But because ∇p in (4.4) must be a gradient at constant s (since the material 

curve is chosen to lie on an s surface), the pressure term in (4.4) can be written 

− α∇p · dl = ∇ζ · dl = 0, 

where 
p 

ζ ≡ α(s0, p)dp′ , 
0 

and s0 is the particular value of s characterizing the s surface in question. Thus 

(4.4) becomes 

dC 
= F · dl. (4.5)

dt 

Thus the only process that changes the circulation around a closed material curve 

on an s surface is friction. 

Using the definition of circulation, (4.2), and Stokes’s theorem, (4.5) can be 

written alternatively as 

d 
(∇× V) · ˆ (∇× F ) · ˆ (4.6)ndA = ndA, 

dt A A 

where now the integrals are over the area enclosed by the material curve, and n̂ is 

a unit vector orthogonal to the s surface. 
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In either of its two forms, (4.5) or (4.6), the Circulation Theorem expresses a 

fluid analog of angular momentum conservation. If the curve happens to be a circle, 

then the circulation can be seen to be the angular momentum per unit mass of an 

infinitesimal ring centered on that circle (multiplied by 2π). 

Now in a local coordinate system fixed to the rotating earth, the absolute 

velocity (which appears in (4.5) and (4.6)) is related to the Earth-relative velocity, 

Vr, by  

∇× V = ∇×Vr + 2ΩΩΩ, (4.7) 

where ΩΩΩ is the vector angular velocity of the Earth’s rotation. Substituting (4.7) 

into (4.6) gives 

d 
[∇× Vr + 2ΩΩΩ] · ˆ (∇×F) · ˆ (4.8)ndA = ndA. 

dt 

This is the form of the Circulation Theorem that we shall most often refer to. It 

implies that on a surface along which some state variable is constant, the relative 

vorticity (∇×Vr) will increase if 

1. The area enclosed by the material curve decreases (implying convergence). 

2. The curve is displaced southward or is tilted, such that ΩΩΩ · n̂ decreases. 

Henceforth, we shall assume Earth-relative coordinates and drop the subscript 

r in (4.8). 

It is worth noting that the dependence of specific volume, α, on  water  vapor  

in the atmosphere and on salinity in the ocean can be accounted for in forming the 

13




∮ 

circulation theorem, by a suitable choice of variables. In the atmosphere, a good 

choice of variables is the virtual potential temperature, defined 

( )κ 

θv ≡ Tv 
p0 

, (4.9) 
p 

where Tv is given by (2.4), p0 is a reference pressure (usually 1000 MBA), and κ 

is Rd/cpd, where  Rd is the gas constant for dry air, and cpd is the heat capacity at 

constant pressure of dry air. It can be shown that θv is very nearly conserved in 

reversible adiabatic transformations. Moreover, as is clear from (2.3) and (4.9), 

RdTV κ−1 −κα = = Rdθvp p0 , (4.10) 
p 

and on a surface along which θv is constant, 

α∇p = cpdθvp −0 
κ∇p κ , 

so that once again, 

α∇p · dl = 0, 

when the curve lies on a surface of constant θv. 

Similarly, in the ocean, we can write 

α = σ(s, T, p)G(p), (4.11) 

where σ is the potential density and is a function of salinity, temperature, and 

pressure. The potential density is the density sea water would have if brought 

reversibly to some reference pressure. Clearly, from (4.11), the pressure gradient 
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term also vanishes when integrated around a closed material curve on a surface 

along which σ is constant. 

While the Circulation Theorem is useful for envisioning changes in fluid vor­

ticity, it is an integral theorem and thus cannot be used as part of a closed system 

of equations describing the detailed evolution of fluid flow. We therefore proceed 

to develop a conserved scalar, called the potential vorticity, using the Circulation 

Theorem as a starting point. 
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