6. Invertibility

The potential vorticity, ¢, is in general a function of the distributions of 5 variables:
the three velocity components, density, and either 6, or o. In quasi-balanced flows,
it is possible to reduce this dependence to one that relies on a single variable, from
which all of the others can be derived. The relationship between ¢ and this single
variable is usually through an elliptic, second-order differential equation. Under
these circumstances, the spatial distribution of ¢ can be inverted, given certain
boundary conditions, to yield the distribution of velocity and mass. This property
of ¢ and of quasi-balanced flows is known as invertibility.

We shall explore various balance approximations in some detail later, but now
let’s have a quick look at how the dependence of ¢ on 5 variables may be reduced
to a dependence on 1 under some conditions.

First, let’s expand the definition of potential vorticity out into its various com-

ponents. For the atmosphere, (5.8) expands to
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From mass continuity, w scales at most according to
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where H and L are typical vertical and horizontal scales over which the flow varies,
and wg is a typical horizontal velocity scale. (Note that in most geophysical flows,
the flow is quasi-nondivergent, so actually w < 0 (uo%)) Thus, in terms that
appear in (6.1), like
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Since, for virtually all flows we will be interested in, H/L < 1, the contribution

the order of the term is

of w to the potential vorticity is utterly negligible. So (6.1) may be accurately

approximated by

>~ f—}—@_@ %+@59v_@89v
= dr 0dy) 0z 0z Oy 0z O0x |~

Now if we employ the hydrostatic approximation, (2.2), it follows that
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for any quantity A. Using this in (6.3) gives
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This can be re-expressed in 6, coordinates as
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Now suppose that the flow is, to a good approximation, hydrostatic and geo-
strophelCC. In 6, coordinates, the hydrostatic and geostrophic relations are ex-

pressed in terms of the Montgomery streamfunction:

M = cpqT), + g2. (6.6)
These relations are:
Hydrostatic:
Geostrophic:
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Substituting these into (6.5) gives
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Then ¢, is a function of M alone, and this function is a nonlinear and usually

(6.8)

elliptic one. (It is always elliptic when %V2M + f has the same sign as q,, and
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Figure 7.1

OM/00, > 0.) When it is elliptic, (6.9) can be inverted to find M, and therefore
Ug, Vg, and p, given the distribution of ¢, and certain boundary conditions.

We will be developing somewhat simpler invertibility relationships for potential
vorticity. The essential elements in all of these are the definition of potential vortic-
ity, coupled with balance approximations that link the instantaneous distribution

of velocity to that of mass.
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