
( ) 

( ) 

13. The superposition principle 

In the quasi-geostrophic system, the relationship between qp anomalies and ϕ 

anomalies is linear, so that distributions of ϕ associated with individual anoma­

lies of qp can be superposed to form the full ϕ field associated with the full qp 

distribution. The hydrostatic and geostrophic relations are also linear, so that per­

turbations of velocity and temperature also just superpose linearly. But energy, on 

the other hand, is a quadratic, and thus does not superpose linearly. This has im­

portant implications for energy transformations in quasi-balanced flows in general, 

and quasi-geostrophic flow, in particular. To see some of these implications, first 

form an energy integral for quasi-geostrophic flows. The equation for kinetic energy 

can be obtained by taking the dot product of the geostrophic flow vector, Vg, with  

the quasi-geostrophic momentum equation (8.29) with the result 

∂ 
+ Vg · ∇  

1 |Vg|2 = −fVg · k̂ ×V + Vg ·F, (13.1)
∂t 2 

where we have made use of the vector identity 

A · k̂ ×A = 0, 

for any vector A. By using the geostrophic relation (8.32) in (13.1), the latter may 

be written 

∂ 1 2+ Vg · ∇  |Vg| = −V · ∇ϕ + F · Vg
∂t 2 

∂ω 
= −∇ · (Vϕ) − ϕ + F · Vg, (13.2)

∂p 
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where we have made use of the mass continuity equation, (8.31). This is the quasi-

geostrophic kinetic energy equation. 

An equation for potential and internal energy can be formed by multiplying 

(9.4) by ∂ϕ/∂p: 

∂ 1 ∂ϕ 
)2 

∂ϕ ∂ϕ Q̇

∂t 
+ Vg · ∇  

2S ∂p 
+ ω 

∂p 
= − 

∂p 
α Sθ . (13.3) 

An equation for total energy associated with perturbations can be formed by sum­

ming (13.2) and (13.3): 

∂ 1 1 1 ∂ϕ 
)2 

∂ ∂ϕ Q̇

∂t 
+ Vg · ∇  

2 
|Vg|2 +

2 S ∂p 
= −∇·(Vϕ)− 

∂p
(ωϕ)+F ·Vg − 

∂p 
α Sθ . 

(13.4) 

Energy is locally changed by a divergence of the flux (by the actual wind) of per­

turbation geopotential, by heating and by friction. 

We next integrate (13.4) over a three-dimensional volume defined in such a way 

that there is no net flux of geopotential or energy itself across its boundaries. This 

integration (after applying the divergence theorem) then results in 

∫ ∫ ˙∂Ep ∂ϕ Q
dV = F · Vg − α , (13.5) 

v ∂t v ∂p Sθ 

where Ep is the pseudo energy, defined 

1 1 
( 
∂ϕ 
)2 

Ep ≡ 
2 
|Vg|2 +

2S ∂p 
. (13.6) 

This shows that the integral of Ep over a suitably defined volume is conserved in 

the absence of heating and friction. 
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( ) 

∣ 

∫ ∫ [ ] 

We can now show that Ep is related to an integral of the pseudo potential 

vorticity. Begin with the perturbation pseudo potential vorticity defined by (9.14), 

multiply it by −ϕ and integrate the result over a control volume on whose lateral 

sides either ϕ or its normal gradient vanishes: 

1 
( 
∂2ϕ ∂2ϕ 

) 
∂ 
( 

1 ∂ϕ 
) 

− 
v 
ϕqp

′ dV = − 
f0 v 

ϕ 
∂x2 

+ 
∂y2 

dV − f0 
v 
ϕ
∂p S ∂p 

dV. (13.7) 

We next integrate the two terms on the right side of (13.7) by parts and use the 

geostrophic relations to get 

∫ ∫ ( )21 ∂ϕ − ϕq′ dV = f0 |Vg|2 + dVp S ∂pv v ∫ [ ( ) ( )] ∫ ∣p0
1 ∂ ∂ϕ ∂ ∂ϕ 1 ∂ϕ ∣− ϕ + ϕ dV − f0 ϕ ∣ dA,
f0 v ∂x ∂x ∂y ∂y A S ∂p ∣ 

pt 

(13.8) 

where the last integral is over the horizontal areas bounding the top and bottom of 

the control volume. 

By our assumption that either ϕ or its normal gradient vanishes at the lateral 

boundaries of the volume, the second term on the right side of (13.8) vanishes, and 

combining the last term on the right with the left side of (13.8) gives 

− ϕ qp 
′ − 

f0 ∂ϕ
δ(p0 − p) +  

f0 ∂ϕ
δ(p − pt) = 2f0 Ep dV, (13.9)S ∂p S ∂pv v 

where we have substituted (13.6). 

Note that using the arguments presented in section 11, the left side of (13.9) is 

simply the integral of the product of ϕ with the pseudo potential vorticity, including 
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the effective delta functions at horizontal boundaries that result when there are 

temperature perturbations there. This integral is proportional to the pseudo energy 

of the system. 

A general conclusion that can be reached with the aid of (13.9) is that bringing 

together like-signed potential vorticity anomalies (or their equivalent delta functions 

in the form of boundary θ′ anomalies) entails an increase in the energy associated 

with the anomalies. An example will suffice to show why this follows. Suppose we 

have two delta function qp anomalies in an infinite domain, separated by a great 

distance, as in the top of Figure 13.1. Let us suppose that each delta function has 

an amplitude of 1 in some suitably normalized three-dimensional coordinates. 

Now the inversion of the elliptic relationship between qp 
′ and ϕ will result in a 

field of ϕ that decays away from each of the two point potential vortices. Let us 

suppose that ϕ has been normalized in such a way that its value at the location of 

the point potential vortex is −1. Let us also suppose that the two vortices are so 

far apart that, for all practical purposes, the amplitude of the part of ϕ associated 

with one point potential vortex is zero at the location of the other point potential 

vortex. In that case, the integral at the left of (13.9) will have the value of 4π 

associated with each vortex, or 8π total. 

Suppose that these two point potential vortices are brought together by some 

process and combined into a single point potential vortex, as at the bottom of Figure 

13.1. Now there are 2 units of qp 
′ in the combined vortex, and the amplitude of ϕ 
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Figure 13.1 

at the location of the combined vortex is thus −2. This gives 16π energy units, 

according to (13.9)—double what was there before! 

Thus it takes a source of energy (from, say, the background flow) to rearrange 

potential vorticity into more compact masses, for which the energy anomaly is 

greater. For a given mass of potential vorticity, the maximum energy is achieved 

when the potential vorticity is concentrated in a sphere, in a coordinate system 

scaled by the deformation radius. The minimum energy content occurs when the 
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potential vorticity is distributed in an infinitely long thread of zero thickness.
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