PV fronts: dispersion relations

Consider a line

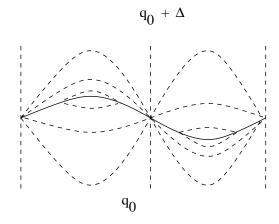
$$Y = \eta(x, t)$$

separating two regions of constant PV. South of the front, we have

$$q = q_0$$

while to the north

$$q = q_0 + \Delta$$



Front separating two constant PV regions. The dashed lines show the anomaly in ψ .

The interface between the two regions is a material surface; fluid parcels cannot move from one side to the other, since they would have to change their PV which is prohibited. Therefore, we have

$$\frac{\partial}{\partial t} \eta + u(x,\eta,t) \frac{\partial}{\partial x} \eta = v(x,\eta.t)$$

The PV inversion formula gives

$$\nabla^2 \psi - \gamma^2 \psi = \begin{cases} q_0 + \Delta & y > \eta \\ q_0 & y < \eta \end{cases}$$

with $\gamma = 0$ (BT) or $1/R_d$ (BC). We'll discuss two ways of solving the linearized problem where

$$\eta = \eta_0 \exp(\imath kx)$$

Matching

We can solve the PV equation using a Fourier expansion in x; for the linearized problem we only need the x-independent and $\exp(ikx)$ modes. We'll talk about the barotropic case:

$$\psi \simeq \begin{cases} (q_0 + \Delta) \frac{y^2}{2} + A \exp(ikx - ky) & y > \eta \\ q_0 \frac{y^2}{2} + B \exp(ikx + ky) & y < \eta \end{cases}$$

Now we match ψ (or v) and $\frac{\partial}{\partial y}\psi$ (or u) at the perturbed boundary keeping terms of order η , A, B but not higher order. Matching ψ gives

$$A \exp(ikx) = B \exp(ikx) \implies A = B$$

Matching $\frac{\partial}{\partial y}\psi$ gives

$$(q_0 + \Delta)\eta_0 \exp(\imath kx) - kA \exp(\imath kx) = q_0\eta_0 \exp(\imath kx) + kA \exp(\imath kx) \quad \Rightarrow \quad A = \frac{1}{2k}\Delta\eta_0$$

The linearized kinematic condition for the interface tells us we need u to order one and v to order η . These are just 0 and

$$v(x, \eta, t) \simeq \frac{\Delta}{2k} \frac{\partial}{\partial x} \eta$$

respectively. Therefore, the interface evolves according to

$$\frac{\partial}{\partial t}\eta = \frac{\Delta}{2k}\frac{\partial}{\partial x}\eta$$

or

$$\omega = -\frac{\Delta}{2}$$
 , $c = -\frac{\Delta}{2k}$

Greens function

Alternatively, we split ψ into a background and a fluctuation part

$$(\nabla^2 - \gamma^2)\overline{\psi} = q_0 + \Delta \mathcal{H}(y)$$

$$(\nabla^2 - \gamma^2)\psi' = \Delta[\mathcal{H}(y - \eta) + \mathcal{H}(y)]$$

where \mathcal{H} is the Heaviside step function. Differentiating the first equation by y gives

$$(\frac{\partial^2}{\partial y^2} - \gamma^2)\overline{u} = -\Delta\delta(y)$$

Linearizing the second by Taylor-expanding $\mathcal{H}(y-\eta) \simeq \mathcal{H}(y) - \eta \delta(y) ...$ gives

$$(\nabla^2 - \gamma^2)\psi' = -\Delta\eta\delta(y)$$

For a single wave, the last equation becomes

$$\left(\frac{\partial^2}{\partial y^2} - k^2 - \gamma^2\right)\psi' = -\Delta\eta\delta(y)$$

Defining the Greens function

$$\left(\frac{\partial^2}{\partial y^2} - \alpha^2\right) G_{\alpha}(y - y') = \delta(y - y')$$

gives

$$\overline{u} = -\Delta G_{\gamma}(y)$$

$$\psi' = -\Delta \eta \ G_K(y)$$

with $K = \sqrt{k^2 + \gamma^2}$ and our interface satisfies

$$\frac{\partial}{\partial t} \eta = \Delta G_{\gamma}(0) \frac{\partial}{\partial x} \eta - \Delta G_{K}(0) \frac{\partial}{\partial x} \eta$$

so that

$$c = \Delta G_K(0) - \Delta G_{\gamma}(0)$$

For the barotropic problem

$$G_k(0) = -\frac{1}{2k}$$
 , $G_0(0) = 0$ \Rightarrow $c = -\frac{\Delta}{2k}$

MIT OpenCourseWare http://ocw.mit.edu

12.804 Large-scale Flow Dynamics Lab Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.