
12.815, Atmospheric Radiation 
Dr. Robert A. McClatchey and Prof. Ronald Prinn 

 
 

3. Scattering of Radiation by Molecules and Particles 
 

a. Introduction 
 
Here, we’ll deal with wave aspects of light rather than quantum aspects. 
 
Consider components of electric field in 2 mutually perpendicular directions, 
parallel and perpendicular to the plane of propagation and propagating in the z 
direction: 
 

i( t kz)
r r
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The intensity is given by: 
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2        (2) 
 
Let us first consider Single Scattering. We may consider a single particle or a 
small volume of particles such that scattering events will all be single scattering 
events. 
 

            
   Fig. 1 
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 G
P  is the phase matrix and provides the angular distribution and polarization of 
the scattered light. For our purpose here, lets consider the total intensity of the 
radiation whether polarized or not. Then the term, , is the phase function or 
scattering diagram which defines the probability for scattering of unpolarized 
incident light in any direction.  is normalized such that: 

11p

11p

 
11p d

1 where d element of solid angle
4

Ω
= Ω =

π∫   (3) 

 

Let us define <cos α> = 
11p d

cos
4

Ω
α

π∫  where α is the scattering angle (see Fig. 

1). 
 
<cos α> = anisotropy parameter (or asymmetric parameter) and can vary 
between +1 and -1. <cos α> = 0  for isotropic scattering. 
 
We define analogous terms for particle absorption and we have: 
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Then, we define: 
 

sca sca sca

ext ext ext
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single scattering albedo

k Q
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σ
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For practical applications,  and scak ω�  can be taken as constants and PP

11 is a 
function only of the scattering angle, α. 
 
This special case is valid for: 
 
(1) randomly oriented particles, each of which has a plane of symmetry 
(2) randomly oriented asymmetric particles, if half the particles are mirror 

images of the others. 
(3) Rayleigh scattering and Mie scattering. 

 
 

Another important definition: 
2 aπ

χ =
λ

 where a = particle radius. 

 
rm n in= − i   where = real part of the index of refraction and nrn i = imaginary part. 

ni is responsible for absorption and  is responsible for scattering. rn
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For water, rn  = 1.33 across the visible and near infrared. And ni will depend on 
the kinds of materials dissolved in the water drops. It will therefore be much 
more of a function of wavelength. 
 
Returning to the analytical expression for the electric field as a beam of radiation 
passing through a single particle: 
 
  ω −= i( t kz)

0E(z, t) E e
 
The intensity of radiation varies as the square of the E-field. So, we have: 
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and – using the definition of size parameter 
2 aπ

χ =
λ

 where we will take z = 2a = 

diameter of drop, we have: 
 

i r4 n− χ i( 4 n z t)2
0I E e e − χ + ω=         

           (5) 
 absorption 

 
 
 
b. Mie scattering – still single scattering. 
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at distance R in the 
far field 

 
 
If we consider isotropic, homogenous, spheres, we have: 
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   The S values are in general 
complex number and functions of 
scattering angle.  

And we have the transformation matrix: 
 
 

12.815, Atmospheric Radiation                                                                                                 Lecture  
Dr. Robert A. McClatchey and Prof. Ronald Prinn                                                                Page 3 of 17  



  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

⎧ ⎫+ −⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪− +
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪+ −
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪− − +⎪ ⎪⎩ ⎭

G

* * * *
1 1 2 2 1 1 2 2

* * * *
1 1 2 2 1 1 2 2

* * * *
1 2 2 1 1 2 2 1

* * * *
1 2 2 1 1 2 2 1

1 1
S S S S S S S S 0 0

2 2

1 1
S S S S S S S S 0 0

2 2
F

1 i
0 0 S S S S S S S S

2 2

i 1
0 0 S S S S S S S S

2 2
 
 
 
which is proportional to the phase matrix: =

G G
F CP     (8) 

 

The normalization condition on 
G
P leads to: 
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and since σ  = effective cross section, we have: sca
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where we’ve used 11 2 2I= F k R  
 
So – we have: 
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For a single sphere, we have: 
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πn  and are function only of α and relate to Legendre Polynomials. τn

 

na  and  are functions of nb
2 a

x
π

=
λ

 and rm n ini= −  and involve Spherical Bessel 

functions. 
 
We also have: 
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All above is for Single Scattering from a Single Sphere. In general, if optical 
thickness is not too large, single scattering can be applied to a distribution of 
particles assumed to be independent. We then have: 
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r r
2

sca sca sca
r r

k (r)n(r)dr r Q (r)n(r)dr= σ = π∫ ∫       
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where n(r) = size distribution, describing the number of the particles having radii 
between r and r+dr over the range r1 to r2. 
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c. Geometric Optics: 
 
When r >> λ, we can use ray theory of light due to Fresnel (see Van de Hulst, Ch. 
3, Light Scattering by Small Particles). Terminology is: 
 
 
 

A  
 
0 – diffraction 
 
1 – external reflection 
 
2 – double refraction 
 
3 – first rainbow 
 
4 – second rainbow
 
 
 

 

and if 
2

0 0 0

1
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4
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θ = θ θ θ θ φ
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A
, is for non-absorbing spheres 

from Fresnel theory. 
 
 
 
A    real = 1.33          = 2.00 
 
0   .500    .500 always true in geometric optics 
 
1   .033    .081 
 
2   .442    .364 
 
3   .020    .043 

often sufficient to consider just 
these 

 
4   .033    .008 
 
5   .002    .004 
 
 
For non-absorbing particles, diffraction = 1\2 of scattered light. Thus, the 
geometric optics limiting value of Qext = 2.0. 
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d. Rayleigh Scattering: 
 

λ
λ =� � r ir and r where m n in

m
−  

 
Radiation penetrated particle 
quickly. ∴ particle own field is 
negligible in the process. 

 
 
 
 
 

Particle can be considered 
to be in homogenous 
external electric field 
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which gives angular distribution of intensity scattered by small particles – the 
Rayleigh scattering. 
 
 
We also obtain: 
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abs scanote that Q Q as x 0> →  

 
 
note 4th power of x or λ-4 dependence 
This result is the same as Mie scattering as limiting case as x → 0 (r<<λ). 
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12.815 Lecture Notes (Atmospheric Radiation) 
 

 
Multiple Scattering 
 
Refer back to Eq. 22 from the first set of Atmospheric Radiation lecture notes where 
we discussed Case III which arises due to the following two conditions: 
 

ν ν>>:F B (T)          (1) 

 
I(θ’,φ’,τν)>>Bν(τν)        (2) 

 
 
The resulting equation of transfer is: 
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Due to the complexities of evaluating the integrals in Eq. 4, a number of techniques 
have been used to generate numerical results: 
 

1. Discrete Ordinates 
2. Doubling or Adding Method 
3. Successive Orders of Scattering 
4. Iteration of Formal Solution 
5. Invariant Embedding 
6. Method of X and Y Functions 
7. Spherical Harmonics Method 
8. Expansion in Eigenfunctions 
9. Monte Carlo Method 

 
We will focus some attention on the Discrete Ordinates Method and apply an 
available computer program to some exercises. 
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Radiative Transfer in a Scattering Atmosphere 
 
 

1. Coordinate system in a “plane parallel” atmosphere 
 
Here position defined by z (or τ) only. Recall that optical depth τ related to 
altitude z by dτ = -αdz where α is the extinction coefficient. 
 

 
 
 

cos θ = μ ; θ = inclination to 
upward
outward

  normal 

 

cos θo = μ o ; θo = inclination to  
upward
outward

  normal 
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Notation 



cos θ‘ = μ‘ ; θ‘ = inclination to 
upward
outward

  normal 

 
From spherical geometry, the cosine of the scattering angle, α can be 
expressed in terms of the incoming and outgoing directions in the form: 
 

( ) ( ) (
1 1

2 22 2cos ' 1 1 ' cos 'α = μμ + − μ − μ φ − φ)                                 (5) 

 
Let us now digress for a moment and examine the properties of Legendre 
polynomials (which come to play in a variety of ways in radiative transfer 
problems). 
 
We may consider writing the phase function in terms of Legendre polynomials 
in the form: 
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Legendre polynomials have the following form, and orthogonal and recurrence 
properties: 
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Using Eq. 5, the Phase Function defined above may be written as follows: 
 

=

⎡ ⎤′ ′ ′ ′ ′μ θ μ φ = μ μ + − μ − μ θ − θ⎢ ⎥⎣ ⎦∑ A A
A
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From the orthogonality condition, the expansion coefficients are given by: 
 

1

1

2 1
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+
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where we note that the phase function is normalized to unity: 
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There is an addition theorem for Legendre polynomials which allows us to 
write the Phase Function as follows: 
 

= =
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In view of the expansion of the phase function, the diffuse intensity may also 
be expanded in a cosine series in the form: 
 
 

N
m

0
m 0
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=

τ μ φ = τ μ φ − φ∑      (11) 

 
 
Substituting Eqs. 9 and 11 into Eq. 3, and using the orthogonality of the 
associated Legendre polynomials, the equation of transfer splits into (N+1) 
independent equations, and may be written as: 
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    m = 0, 1, …… N 
 

 
Let us rewrite these equations as follows: 
 

m
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τ μ
μ = τ μ − τ μ

τ
     (13) 
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with the source function given by: 
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m m m m
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m 1
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m m m
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To proceed with the solution of Eq. 13, we first discretize the equation by 
replacing μ with μi (i= -n,…., n, with n= 1, 2,….) and the integral with a sum 
with the weights, aj

 

=−−

μ μ = μ∑∫
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j n1
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The homogeneous solution for the set of first-order differential equations may 
be written: 
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n
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where  denote the eigenvectors and eigenvalues, respectively, 

and  are

m
j i j( ) and kψ μ m

m
jL  coefficients to be determined from appropriate boundary 

conditions. On substituting Eq. 16 into the homogeneous part of Eq. 13, the 
eigenvectors may be expressed by 
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The particular solution may be written in the form 
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From Eq. 13, we have 
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m m m

q q q 0
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F
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Equations 17 and 19 are linear equations in  and may be solved 

numerically. The complete solution for Eq. 13 is the sum of the general 

m
j and zΨ m
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solution for the associated homogeneous system of the differential equations 
and the particular solution. Thus, 
 

m
j 0

n
km m m m

i j j i i
j n

I ( , ) L ( )e Z ( )e
−τ

− τ μ

=−

τ μ = ψ μ + μ∑     (20) 

 
   i = -n, ………. +n 
 

In order to determine the unknown coefficients, m
jL , aq, boundary conditions 

must be imposed. 
 
In the discrete-ordinates method for radiative transfer, analytical solutions for 
the diffuse intensity are explicitly given for any optical depth. Thus the 
internal radiation field can be evaluated without additional computational 
effort. And furthermore, useful approximations can be developed from this 
method for flux calculations. 
 
Advantages of Discrete Ordinate Method 
 

a) In principle - numerical computations can be done for any order of 
approximation. 

b) The internal radiation field is determined - not just the Reflection & 
Transmission. 

c) Accurate results (to about 1%) are achievable with only a few streams 
(3-4) for most cases. 

 
We will utilize the Discrete Ordinate computer program to do a few 
excercises. 
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Multiple Scattering Computational Techniques 
 

1. Discrete Ordinates (We’ll discuss in detail in a few minutes.) 
2. Doubling or Adding 

Principle: If reflection and transmission is known for each of two layers, the 
reflection and transmission from the combined layer can be obtained by 
computing the successive reflections back and forth between the two layers. 
If the two layers are chosen to be identical, the results for a thick 
homogenous layer can be built up rapidly in a geometric (doubling) manner. 

3. Successive Orders of Scattering 
Principle: Intensity is computed individually for photons scattered once, twice, 
three times, etc. with the total intensity obtained as the sum over all orders. 
If the intensity is expanded in a Fourier series, the high frequency terms arise 
from photons scattered a small number of times. Therefore, most Fourier 
terms can be obtained with some accuracy by computing a few orders of 
scattering. 

4. Iteration of Formal Solution 
Direct solution of integral over source function by dividing atmosphere into 
layers with small optical thickness. 

5. Invariant Imbedding 
Differential Equations are developed which give the change of reflection and 
transmission matrices when an optically thin layer is added to the atmosphere. 
It is a special case of the Doubling or Adding technique. 

6. Method of X and Y Functions 
Involves the determination of integral equations for functions which depend 
upon only one angle and are directly related to Reflection and Transmission 
matrices. The integral equations need to be solved numerically. The integral 
equations are completely specified by a character function depending on the 
particular phase function. This method is due to Chandrasekhar. 

7. Spherical Harmonic Method 
Intensity is immediately expanded into a finite number of spherical harmonics 
and then the Phase Function is expanded in Legendre polynomials similar to 
the Discrete Ordinate method. 

8. Expansion in Eigenfunctions 
Standard technique for solving differential equations. Find homogenous 
solution and particular solution. Apply boundary condition. Direct application 
to complete RTE is ponderous. Discrete Ordinates technique depends on this 
approach for solving discretized set of equations. 

9. Monte Carlo Method 
Scattering of an individual photon can be considered to be a stochastic 
process, with the Phase Function being the probability density function for 
scattering at a given angle. Photons are allowed to play a game of chance in a 
computer and by recording the history of a sufficient number of photons, the 
radiation field can in principle be determined to an arbitrary accuracy. The 
basic simplicity of this method allows great flexibility, and hence it can be 
applied to complicated problems which would be virtually insoluble by other 
methods. 
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Isotropic Scattering and Discrete Ordinates  
 
Pertinent RTE: 
 

ω ′ ′ ′ ′ ′μ μ φ τ τ = μ φ τ − μ φ μ φ μ φ τ μ φ
π ∫∫
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4
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0
0 0e P ( , )F

4

τ− μω
+ μ φ :

�
     (1) 

 
 
For isotropic scattering, we have: 
 

2

0

1
P( , , , ) 1 and I ( , ) I( , , )d

2

π

′ ′μ φ μ φ = μ τ = μ φ τ φ
π ∫     (2) 

 
i.e. – Intensity is azimuthally independent. 
 

τ− μ

−

τ μ ω ω′ ′μ = τ μ − τ μ μ −
τ ∫ :

� �
0

1

1

dI( , )
I( , ) I( , )d F e

d 2 4π
    (3) 

 
Applying Gaussian Quadrature, and setting Ii = I (τ, μi), we have: 
 

0

n
i

i i j j
j n

dI
I I a F e

d 2 4

+ τ− μ

=−

ω ω
μ = − −

τ π∑ :

� �       (4) 

i n,........., n= − +  
 
 
Since this is linear differential equation, we need to seek the general solution 
(sometimes called the homogenous solution) and then the particular solution. 
 
 
Homogenous solution: 
 
Try (guess)  where  and k are constants. k

i iI g e− τ= ig

 
i

i i j j
j

dI
I I

d 2
ω

μ = −
τ ∑

�
a         (5) 

 

i i j i
j

g (1 k) a g
2
ω

∴ + μ = ∑
�

 

 
So,  must be of the form ig ( )+ μi

L
1 k

  where L is a constant. 

 
 
Substituting this back into Eq. 5, we get the characteristic equation for eigenvalue k 
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+

=− =j 1j

ω
= ω =

+ μ − μ∑ ∑
� �

j

n n
j j

2 2
j n

a a
1

2 (1 k) (1 k )
 

 Note difference in summation 
 
           (6) 
 
 
This Eq. has 2n roots,  α = 1……..n which when kα± ω�  = 1 includes 2K  values of 
zero. 

α

 
General Solution is: 
 

α τ

α= α

± α
= =

± μ∑
∓kn

i
1 i

L e
I i n,......, n

1 k
− +      (7) 

 
Particular Solution: 
 

Try: 0
i iI F he i n,......, n

4

τ− μω
= =

π :

�
− +  

 

We have: 
n

i
i i j j

j n0

1
h h ah 1

2

+

=−

−μ
= − ω −

μ ∑�        

 

or   
n

i
i

0 j n
j ja h 1

2

+

=−

ωμ⎛ ⎞+ = +⎜ ⎟μ⎝ ⎠ ∑
�

h 1      (8) 

 
 

ih  must be of the form = 
γ
μ+ μ

i

0
1

       (9) 

 

with 
1

n
j

2
j 1 j 0

a
1

[1 4

−

=

⎛
γ = − ω⎜⎜ − μ μ⎝ ⎠

∑�
⎞
⎟⎟        (10) 

 
 
Adding the homogenous and particular solutions, we obtain: 
 

τ−− τ μ

=

ω γ
= +

μ+ μ ⎛ ⎞π +⎜ ⎟μ⎝ ⎠

∑ :�j 0
kn

j
i

j 1 ii j

0

L e F e
I

1 k 4 1
      (11) 

     i = -n, …….. +n 
 
The  are determined from boundary conditions. jL
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