
CHAPTER 2 

Time Domain Methods 

Time domain methods do not employ any form of transform space to describe a time series (although 

it is commonly the case that one can best understand their structures by analyzing them in the frequency 

domain). The names most associated with these techniques are Wiener, and Box and Jenkins. As with 

the frequency domain methods, one can begin the discussion in continuous time and it was one of Wiener’s 

great contributions to show how to deal with that case. But continuous time representations raise all sorts 

of complex mathematical issues that disappear when a time series is made discrete, and so for present 

purposes, we will begin with the discrete case of a uniformly sampled time series {w = 

1. Representations-1 

As with Fourier methods, much of the purpose of these methods is to find e!cient representations 

of stochastic processes whose interpretation can lead to physical insights. For notational simplicity, we 

will assume that �w = 1= Consider the simple rule (actually a di�erence equation of similar form to (7.1) 

above), 

{p+1 = d{p + �p (1.1) 

where d is a constant and �p is a zero-mean white noise process of variance �2= Starting with {0 = 0> (1.1)� 

permits simple generation of realizations of {p depending upon the particular run of random numbers 

�p (Fig. 28). We can compute the autocovariance of {p : 

2U (0) =? {2 A=? (d{p�1 + �p�1)
2 A= d2U (0) + � (1.2)p � 

where we used  ? {p�1�p�1 A= 0> and the assumption that the time-series was wide-sense stationary 

(? {2 1 A=? {
2 A= U (0))= So,pp�

2�
U (0) = � 

(1 � d2) 
= (1.3) 

Evidently, there would be a problem if d = 1> and in fact,  |d| ? 1 proves to be necessary for the time-series 

to be stationary. Similarly, 

U (1) =? {p+1{p A=? (d{p + �p+1 ) {p A= dU (0) = (1.4) 

Exercise. Find U (2) > ===> U (p) for {w in (1.1). 
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If one knew U (0) and U (1), Eqs.  (1=3> 1=4) would fully determine d> �2 and they in turn fully � 

determine everything there is to know about it. Before asking how one might determine U (0) > U  (1) > let 

us ask where an equation such as (1.1) might arise? 

Consider a simple di�erential system 

g{ (w) 
= D{ (w) +  j (w) (1.5) 

gw 

where D is constant and � is any externally imposed forcing. Equations like this are used to describe, 

e.g., a local change in a heat content anomaly, { (w) > as the result of conduction from a reservoir, heat 

loss by radiation, and external sources j. Forming simple one-sided time di�erences, (1.5) becomes 

{ (p�w + �w) =  �w (D + 1)  { (p�w) +  �wj (p�w) (1.6) 

or, 

{p+1 = �w(D + 1){p + �wjp (1.7) 

which is of the form (1=1) with d = �w (D + 1)  = Two types of problem exist. In one, jp is known, and 

one seeks d; in the other type, jp = �p is unknown and believed to be a white noise process.. 

In the second type of problem one has observations of {w and the question is what the best estimates 

of d> �2 are. Let us try least-squares by minimizing, � 

1Q �X 
2M = ({p+1 � d{p) = (1.8) 

p=0 

The argument here would be that (1.1) can be regarded as an equation which forecasts {p+1 from {p> 

and minimizing the unpredictable part, �p, would give the best possible forecast system. The normal 

equations for (1.8) are just one equation in one unknown, 

1 2 X Q �Q � X 
d {2 = {p+1 {p = (1.9)p 
p=0 p=0 

Divide both sides of this equation by Q>and we see that it can be written as 

d ˜ U (1) > (1.10)U (0) = ˜

where we recognize  
1 X1 

Q �
{2 > (1.11)

Q p

p=0 

as an estimate of the true autocovariance U (0) > and similarly for U (1) = Given the resulting estimate of 

d> one can substitute into (1.8) and compute the estimate ˜d> call it ˜ � 2 = � 

A more general form of the representation of a time-series is, 

{p+1 = d1{p + d2{p�1 + === + dP {p�P +1 + �p+1> (1.12) 
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which is called an “autoregressive process of order P ” or AR(M), so that (1.1) is an AR(1) process. To 

determine the coe!cients dl we can proceed again by least-squares, to find the minimum of 

1Q �X 
2

M = ({p+1 � d1{p � d2{p�1 � === � dP {p�P +1) (1.13) 
p=0 

and forming the normal equations, 

d1U (0) + d2U (1) + d3U (2) + == + dP U (P � 1) = ˜˜ ˜ ˜ ˜ U (1) 

d1U (1) + d2U (0) + d3U (1) + == + dP U (P � 2) = ˜˜ ˜ ˜ ˜ U (2) 

=== (1.14) 

d1U (P � 1) + d1U (P � 2) + d3U (P � 3) = + = + dP U (0) = ˜˜ ˜ ˜ ˜ U (P ) 

U (�n) =  ̃where we used  ˜ U (n) = Equations (1.14) are usually known as the Yule-Walker equations. Solving 
Wthem produces an estimate of the vector of unknowns a = [d1> ===dP ] and the value of M is the estimate 

of �2= If (1.14) is written in matrix form � 

R̃a = b (1.15) 

one sees that R̃ is a covariance matrix having the special property that all diagonals have the same values: 

;
AAAAAAA? 

<
AAAAAAA@ 

˜ ˜ ˜ ˜U (0) U (1) U (2) = U(P � 1) 
˜ ˜ ˜ ˜U (1) U (0) U (1) = U(P � 2) 

˜ ˜ ˜ ˜ ˜R = U (2) U (1) U (0) = U(P � 3) (1.16)AAAAAAA
AAAAAAA> 

= = = = = 
˜ ˜ ˜ ˜U (p � 1) U(p � 2) U(p � 3) = U (0) = 

A matrix with constant diagonals is called “Toeplitz”, and the special form of (1.15) permits the system 

of equations to be solved without a matrix inversion, using an extremely fast recursive algorithm called 

the Levinson (or sometimes, Levinson-Derber) algorithm. This possibility is less important today than 

it was in the days before fast computers, but if P is extremely large, or very large numbers of systems 

have to be solved, the possibility can remain important. 

If jp is a known time-series, one can proceed analogously by minimizing via least-squares, the 

objective function 

1Q �X 
2M = ({p+1 � d{p � jp) (1.17) 

p=0 

with respect to d= Higher order generalizations are obvious, and details are left to the reader. 




