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7. Gauss-Markov Theorem 

It is often the case that one seeks a signal in a noise background. Examples would be the determination 

of a sinusoid in the presence of a background continuum stochastic process, and the determination of 

a trend in the presence of other processes with a di�erent structure. A perhaps less obvious example, 

because it is too familiar, is the estimation of the mean value of a time series, in which the mean is the 

signal and the deviations from the mean are therefore arbitrarily defined as the “noise.” The cases one 

usually encounters in elementary textbooks and classes are some simple variant of a signal in presence of 
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white noise. Unfortunately, while this case is easy to analyze, it usually does not describe the situation 

one is faced with in practice, when for example, one must try to determine a trend in the presence of red 

noise processes, ones which may exhibit local trends easily confused with a true secular (deterministic) 

trend. This problem plagues climate studies. 

There are several approaches to finding some machinery which can help one to fall into statistical 

traps of confusing signal with noise. One widely applicable methodology is called variously “minimum 

variance estimation”, the “Gauss-Markov Theorem”, and in a di�erent context, sometimes the “stochastic 

inverse.” Although a more extended discussion is given in Wunsch (1996), or see Liebelt (1967) for a 

complete derivation, the following heuristic outline may help. 

Let there be some set of Q unknown parameters, written here as a vector, s= We suppose that they 

 ® 

have zero mean, ? s A= 0> and that there is a known covariance for s> Rvv = ss W = Let there be a set 

of P measurements, written here also as another vector y> also with zero mean, and known covariance 

? yyW A= R|| = Finally, we will assume that there is a known covariance between the measurements and 

the unknowns: Rv| =? sy
W A = Given these covariances (correlations), what can we say about s> given 

y> if we try to estimate any of the elements vl, as a linear combination of the measurements: 

P X 
ṽl = Elm |m = (7.1) 

m=1 

The question is, how should the weights, Elm be chosen? Arbitrarily, but reasonably, we seek Elm such 

that the variance of the estimated vl about the true value is as small as possible, that is, 
3 42+* D E p X 

2(ṽl � vl) = C Elm |m � vlD > 1 (7.2)� l � Q 
m=1 

should be a minimum. Before proceeding, note that Elm is really a matrix, and each row will be separately 

determinable for each element vl. This simple observation permits us to re-write (7.2) in a matrix-vector 

form. Minimize the diagonal elements of: 

W W 
s s? (̃ s) (̃ � s) A=? (By � s) (By � s) A P= (7.3)� � 

The important point here is that, in (7.3), we are meant to minimize the Q separate diagonal elements, 

each separately determining a row of B; but we can use the notation to solve for all rows simultaneously. 

At this stage, one expands the matrix product in (7.3), and uses the fact that quantities such as 

? ss W A= Rvv are known. One can show without too much di!culty (it involves invoking the properties 

of positive definite matrices) that the minimum of the diagonals is given by the unique choice, 

B = Rv| R
�1 (7.4)|| > 

with the first row being the solution for ṽ1> etc. 

The result (7.4) is general and abstract. Let us now consider a special case in which the measurements 

|t are some linear combination of the parameters, corrupted by noise, that is, |t = 
PQ Hto vo +qt > which o=1 
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can also be written generally as, 

Es + n = y= (7.5) 

With this assumption, we can evaluate 

W
Rv| =? s (Es + n) A= RvvE

W > (7.6) 

assuming ? sn W A= 0> and 

R|| = ERvvE
W + Rqq (7.7) 

Wwhere Rqq =? nn A. Then one has immediately, ¡
B = Rvv ERvv EW +Rqq 

¢ �1 
> (7.8) 

and ¡
s̃ = Rvv ERvv EW +Rqq 

¢ �1 
y= (7.9) 

There is one further, extremely important step: how good is this estimate? This question is readily 

answered by substituting the value of B back into the expression (7.3) for the actual covariance about 

the true value.  We obtain immediately,  ¡
ERvvE

W 
¢ 

P = Rvv Rvv E
W +Rqq ERvv = (7.10)� 

One of the benefits of the general approach is that we have obtain the complete matrix P, which  gives  

us not only the variances (uncertainties) of each of the ṽl about the true value, but also the covariances 

of these errors or uncertainties in each, with all the others–they do after all, depend upon the same 

data–so that it is no surprise that they would have correlated errors.) 

A special case, written out in Wunsch (1996), and which is particularly illuminating is the simple 

problem of determining a mean value (so that s is a scalar), in the presence of a noise field which has an 

arbitrary correlation. One finds there, that the uncertainty of the mean can be vastly greater than the 

conventional estimates based upon white noise, if the noise is correlated in time. 

Remark 2. A common complaint among beginning users of Gauss-Markov and related estimation 

methods is: “I have no idea what the covariances are. This all becomes completely arbitrary if I just 

make up something.” The answer to this worry is found by examining the statement “I have no idea what 

the covariances are.” If this is really true, it means that an acceptable answer for any element, ṽl could 

have any value at all, including something infinitesimal, 10�40> or astronomical, ±1040 and one would 

say “that’s acceptable, because I know nothing at all about the solution”. The reader may say, “that’s 

not what I really meant”. In fact, it is extremely rare to be completely ignorant, and if one is completely 

ignorant, so that any values at all would be accepted, the investigator ought perhaps to stop and ask if the 

problem makes any sense? More commonly, one usually knows something, e.g., that the parameters are 

very unlikely to be bigger than about ±V0. If that is all one is willing to say, then one simply takes 

0 IQ (7.11)Rvv = V2 
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with something analogous perhaps, for Rqq, which becomes an estimate of the noise magnitude. Letting 

V2 $4 is the appropriate limit if one really knows nothing, and one might study 7.10) in that limit. The0 

point is, that the estimation procedure can use whatever information one has, and one need not stipulate 

anything that is truly unknown. In particular, if one does not know the non-diagonal elements of the 

covariances, one need not state them. All that will happen is that a solution will be obtained that likely 

will have a larger uncertainty than one could have obtained had additional information been available. 

The more information one can provide, the better the estimate. A final comment of course, is that one 

must check that the solution and the errors left are actually consistent with what was postulated for the 

covariances. If the solution and noise residuals are clearly inconsistent with Rvv> etc., one should trash 

the solution and try to understand what was wrong; this is a very powerful test, neglected at one’s peril. 

If used, it can rescue even the naivest user from a truly silly result. 




