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11. Spectral Estimation 

We have seen that the Fourier coe!cients (periodogram) of a normal white noise process are uncorre-

lated (and thus independent) random variables, whose phase has no information except that its underlying 

probability density is uniform. The squares of the absolute values are distributed in "2 such that the 2 

mean values ? d2 + e2 A= �2@Q (if one prefers to use the complex Fourier series, ? |�q|
2 
A= �2@2Q>q q � �

2 2
with the understanding that ? |�q| A=? |� �q| A, that is, half the variance is at negative frequencies, 

but one could decide to double the power for positive q and ignore the negative values). Its variance 

about the mean is given by (10.93). 

Suppose we wished to test the hypothesis that a particular time series is in fact white noise. Figure 

10b is so noisy, that one should hesitate in concluding that the Fourier coe!cients have no structure 

inconsistent with white noise. To develop a quantitative test of the hypothesis, we can attempt to use ¯ ¯ 
the result that ? ¯�2 ̄  A should be a constant independent of q= A useful, straightforward, approach is to q 

exploit the independence of the neighboring Fourier coe!cients. Let us define a power spectral estimate 

as 
q+[�@4] X1 2��̃ (vq) =  |�q| (11.1)

[�@2] + 1 
s=q�[�@4] 

where for  the moment,  � is taken to be an odd number and [�@4] means “largest integer in �@4”= That 

is the power spectral estimate is a local average over [�@2] of the squared Fourier Series coe!cients 

surrounding frequency vq = Fig. 11a shows the result for a white noise process, where the average was 

over 2 local values surrounding vq (4 degrees of freedom). Fig. 11b shows an average over 6 neighboring 
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Figure 11. (a) Power density spectral estimate of a white noise process averaged over 

2 frequency bands (4 degrees-of-freedom), and (b) over 6 frequency bands (12 degrees of 

freedom). An approximate 95% confidence interval is shown as obtained from (10=76)= 

(c) Lower curve is the white noise process whose spectra are shown in (a), (b), and the 

upper curve is the same white noise (�2 = 1)  plus a unit amplitude sine wave, displaced � 

upwards by 5 units. Visually, the presence of the sine wave is di!cult to detect. (d) 

Power density of upper curve in (c), making the spectral peak quite conspicuous, and 

much larger, relative to the background continuum than the 95% confidence limit. 

frequency estimates (12 degrees-of-freedom). The local averages are obviously a good deal smoother than 

the periodogram is, as one expects from the averaging process. The probability density for the local 

average �� (vq) is evidently that for the sum of [�@2] variables, each of which is a "2 variable. That 2 

is, �̃ "2� (vq) is a random variable with � degrees-of-freedom (2 degrees-of-freedom come from each � 

periodogram value, the sine and cosine part, or equivalent real and imaginary part, being uncorrelated 
˜variables). The mean ? �� (vq) A= �2@Q and the variance is � 

³ ´2 4�
? �̃ � � �(vq) � (vq) A= > (11.2)� 

2Q 2 � 

which goes to zero as � $ 4 for fixed Q . Visually, it is much more apparent from Fig. 11 that the 

underlying Fourier coe!cients have a constant value, albeit, some degree of variability cannot be ruled 

out as long as � is finite. 

This construct is the basic idea behind spectral estimation. The periodogram is numerically and 

visually extremely noisy. To the extent that we can obtain an estimate of its mean value by local 

frequency band averaging, we obtain a better-behaved statistical quantity. From the probability density 
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of the average, we can construct expected variances and confidence limits that can help us determine if 

the variances of the Fourier coe!cients are actually independent of frequency. 

The estimate (11.1) has one obvious drawback: the expected value depends upon Q> the number of 

data points. It is often more convenient to obtain a quantity which would be independent of Q> so that 

for example, if we obtain more data, the estimated value would not change; or if we were comparing the 

energy levels of two di�erent records of di�erent length, it would be tidier to have a value independent 
˜of Q= Such an estimate is easily obtained by dividing �� (vq) by 1@Q (multiplying by Q)> to give 

q+[�@4]
1 X 

2
�̃ � (vq) =  |�s| = (11.3)

([�@2] + 1)@Q 
s=q�[�@4] 

This quantity is the called the estimated “power spectral density”, and it has a simple interpretation. 

The distance in frequency space between the individual periodogram values is just 1@Q (or 1@Q�w if one 

puts in the sampling interval explicitly). When averaging, we sum the values over a frequency interval 

([�@2]@Q�w). Because 
Pq+[�@4] 2 
s=q�[�@4] |�q|

˜is the fractional power in the range of averaging, �� (vq) > is just 

the power/unit frequency width, and hence the power density. (If one works with the Fourier transform 

the normalization factors change in the obvious way.) For a stochastic process, the power density is 

independent of the data length. 

Exercise. Show analytically that the power density for a pure sinusoid is not independent of the data 

length. 

A very large number of variations can be played upon this theme of stabilizing the periodogram by 

averaging. We content ourselves by mainly listing some of them, leaving the textbooks to provide details. 

The average over the frequency band need not be uniform. One may prefer to give more weight to 

frequencies towards the center of the frequency band. Let Zq be any set of averaging weights, then (11.3) 

can be written very generally as Pq+[�@4] 2Zs |�s|1 s=q�[�@4]
�̃ � (vq) =  > (11.4)Pq+[�@4]([�@2] + 1) @Q 

s=q�[�@4] Zs 

and the bands are normally permitted to overlap. When the weights are uniform, and no overlap is 

permitted, they are called the “Daniell” window. When the averaging is in non-overlapping bands the 

values of �̃� (vq) in neighboring bands are uncorrelated with each other, asymptotically, .as Q $ 4
With overlapping bands, one must estimate the expected level of correlation. The main issue is the 

determination then of �–the number of degrees-of-freedom. There are no restrictions on � being even 

or odd. Dozens of di�erent weighting schemes have been proposed, but rationale for the di�erent choices 

is best understood when we look at the Blackman-Tukey method, a method now mainly of historical 

interest. 

An alternative, but completely equivalent estimation method is to exploit explicitly the wide-sense 

stationarity of the time series. Divide the record up into [�@2] non-overlapping pieces of length P (Fig. 
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Figure 12. North component of a current meter record divided into 6 non-overlapping 

segments. One computes the periodogram of each segment and averages them, producing 

approximately 2 degrees of freedom from each segment (an approximation dependent 

upon the spectrum not being too far from white). 

¯ ¯2 
12) and form the periodogram of each piece ¯̄ �(qs)¯̄ (The frequency separation in each periodogram is 

clearly smaller by a factor [�@2] than the one computed for the entire record.) One then forms 

[�@2] ¯ X ¯21 ¯��̃ (vq) =  ¯ �(s)¯̄ (11.5)
([�@2] + 1) @P q 

s=1 

For white noise, it is possible to prove that the estimates in (11.3, 11.5) are identical. One can elaborate 

these ideas, and for example, allow the sections to be overlapping, and also to do frequency band averaging 

of the periodograms from each piece prior to averaging those from the pieces. The advantages and 

disadvantages of the di�erent methods lie in the trade-o�s between estimator variance and bias, but the 

intent should be reasonably clear. The “method of faded overlapping segments” has become a common 

standard practice, in which one permits the segments to overlap, but multiplies them by a “taper”, Zq 

prior to computing the periodogram. (See Percival and Walden). 




