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19. Simulation

In an age of fast computers, and as a powerful test of one’s understanding, it is both useful and
interesting to be able to generate example time series with known statistical properties. Such simulations
can be done both in the frequency and time domains (next Chapter). Suppose we have a power spectral
density, ® (s)—either a theoretical or an estimated one, and we would like to generate a time series having
that spectral density.

Consider first a simpler problem. We wish to generate a time series of length N, having a given
mean, m, and variance o2. There is a trap here. We could generate a time series having exactly this
sample mean, and exactly this sample variance. But if our goal is to generate a time series which would
be typical of an actual physical realization of a real process having this mean and variance, we must ask
whether it is likely any such realization would have these precise sample values. A true coin will have a
true (theoretical) mean of 0 (assigning heads as +1, and tails as -1). If we flip a true coin 10 times, the
probability that there will be exactly 5 heads and 5 tails is finite. If we flip it 1000 times, the probability
of 500 heads and tails is very small, and the probability of “break-even” (being at zero) diminishes with
growing data length. A rcal simulation would have a sample mean which differs from the true mean
according to the probability density for sample means for records of that duration. As we have seen
above, sample means for Gaussian processes have a probability density which is normal G (0, o2/N ) CIf
we select each element of our time series from a population which is normal G (0, ¢) , the result will have
a statistically sensible sample mean and variance. If we generated 1000 such time series, we would expect
the sample means to scatter about the true mean with probability density, G (0, 02/1\7) .

So in generating a time series with a given spectral density, we should not give it a sample spectral
density exactly equal to the one required. Again, if we generated 1000 such time series, and computed
their estimated spectral densities, we could expect that their average spectral density would be very close
to the required one, with a scattering in a x2 distribution. How might one do this? One way is to employ
our results for the periodogram. Using
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Yq = Z @, COS (27;:1(1) + Z bn sin <27;7jq> . (191)
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@y, by, are generated by a Gaussian
-random number generator G (0,® (s,)) such that < a, >=< b, >= 0, < a2 >=< b2 >=

n

O (s=n/T) /2, < apay >=< byb,, >= 0,m # n, < ayb,, >= 0. The requirements on the a,,b,
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FIGURE 28. A simulated time series with power density proportional to s~2. Although
just a “red-noise” process, the eye seems to see oscillatory patterns that are however,

ephemeral.

assure wide-sense stationarity. Confirmation of stationarity, and that the appropriate spectral density
is reproduced can be simply obtained by considering the behavior of the autocovariance < yiy, > (see

Percival and Walden, 1993). A unit time step, t = 0, 1,2, ... is used, and the result is shown in Figure 28.

(This result is rigorously correct only asymptotically as T — oo, or for white noise. The reason is that
for  finite record lengths of strongly colored  processes, the  assumption  that

{anan) = (bpby) = 0, etc., is correct only in the limit (e.g., Davenport and Root, 1958)).





