
16  4. Discrete Observations 

4.0.1. Sampling. The above results show that a band-limited function can be reconstructed perfectly 

from an infinite set of (perfect) samples. Similarly, the Fourier transform of a time-limited function can 

be reconstructed perfectly from an infinite number of (perfect) samples (the Fourier Series frequencies). 

In observational practice, functions must be both band-limited (one cannot store an infinite number of 

Fourier coe!cients) and time-limited (one cannot store an infinite number of samples). Before exploring 

what this all means, let us vary the problem slightly. Suppose we have { (w) with Fourier transform {̂ (v) 

and we sample { (w) at uniform intervals p�w without paying attention, initially, as to whether it is 

band-limited or not. What is the relationship between the Fourier transform of the sampled function and 

that of { (w)? That is, the above development does not tell us how to compute a Fourier transform from 

a set of samples. One could use (3=2) > interpolating before computing the Fourier integral. As it turns 

out, this is unnecessary. 

We need some way to connect the sampled function with the underlying continuous values. The 

��function proves to be the ideal representation. Eq. (2.13) produces a single sample at time wp = The 

quantity, X4
{LLL (w) =  { (w) � (w � q�w) > (4.1) 

q=�4 

vanishes except at w = t�w for any integer t= The value associated with {LLL (w) at that time is found 

by integrating it in an infinitesimal interval �% + t�w w % + t�w and one finds immediately that � � 

{LLL (t�w) =  { (t�w) = Note that all measurements are integrals over some time interval, no matter how 

Continued on next page...
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short (perhaps nanoseconds). Because the ��function is infinitesimally broad in time, the briefest of 

measurement integrals is adequate to assign a value.1= 

Let us Fourier analyze {LLL (w) > and evaluate it in two separate ways: 

(I) Direct sum. Z X4
{̂LLL (v) =  

4 

{ (w) � (w � p�w) h�2�lvw gw 
p=�4 �4 X4

= { (p�w) h�2�lvp�w = (4.2) 
p=�4 

(II) By convolution. Ã ! X4
{LLL (v) = ˆˆ { (v) � F � (w � p�w) = (4.3) 

p=¡P ¢ �4 

What is F 4 
�4 � (w � p�w) ? We have, by direct integration, p= Ã ! X X4 4

F � (w � p�w) = h�2�lpv�w (4.4) 
p= p=�4 �4 

What function is this? The right-hand-side of (4.4) is clearly a Fourier series for a function periodic 

with period 1@�w> in v= I assert that the  periodic  function  is  �w� (v) > and the reader should confirm that 

computing the Fourier series representation of �w� (v) in the v�domain, with period 1@�w is exactly (4.4). 

But such a periodic � function can also be written2 �
X4

�w � (v � q@�w) (4.5) 
q=�4 

Thus (4.3) can be written 

X4
{LLL (v) = ˆˆ { (v) � �w � (v � q@�w) 

q=�4 Z X4
ˆ 0= 

4 

{ (v 0)�w � (v � q@�w v ) gv 0 � 
q=�4 �4 X ³ ´4
q

ˆ= �w { v (4.6)� 
�w 

q=�4 

We now have two apparently very di�erent representations of the Fourier transform of a sampled 

function. (I) Asserts two important things. The Fourier transform can be computed as the naive dis-

cretization of the complex exponentials (or cosines and sines if one prefers) times the sample values. 

Equally important, the result is a periodic function with period 1@�w= (Figure 5). Form (II) tells us that 

1�3functions are meaningful only when integrated. Lighthill (1958) is a good primer on handling them. Much of the 

book has been boiled down to the advice that, if in doubt about the meaning of an integral, “integrate by parts”. 
2Bracewell (1978) gives a complete discussion of the behavior of these othewise peculiar functions. Note that we 

are ignoring all questions of convergence, interchange of summation and integration etc. Everything can be justified by 

appropriate limiting processes. 
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Figure 5. Real part of the periodic Fourier transform of a sampled function. The 

baseband is defined as 1@2�w v 1@2�w, (here  �w = 1)> but any interval of width � � � 

1@�w is equivalent. These intervals are marked with vertical lines. 
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Figure 6. vd is the position where all Fourier transform amplitudes from the Fourier 

transform values indicated by the dots (Eq. 4.6) will appear. The baseband is indicated 

by the vertical lines and any non-zero Fourier transform values outside this region will 

alias into it. 

the value of the Fourier transform at a particular frequency v is not in general equal to {̂ (v) = Rather 

it is the sum of all values of {̂ (v) separated by frequency 1/�w= (Figure 6). This second form is clearly 

periodic with period 1@�w> consistent with (I). 

Because of the periodicity, we can confine ourselves for discussion, to one interval of width 1@�w= By 

convention we take it symmetric about v = 0> in the range �1@ (2�w) � v 1@ (2�w) which we call the � 
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baseband. We can now address the question of when ˆ { (v)? The {LLL (v) in the baseband will be equal to ˆ

answer follows immediately from (4=6): if, and only if, {̂ (v) vanishes for v � |1@2�w| = That is, the Fourier 

transform of a sampled function will be the Fourier transform of the original continuous function only if 

the original function is bandlimited and �w is chosen to be small enough such that {̂ (|v| A 1@�w) =  0= 

We also see that there is no purpose in computing {̂LLL (v) outside the baseband: the function is perfectly 

periodic. We could use the sampling theorem to interpolate our samples before Fourier transforming. 

But that would produce a function which vanished outside the baseband–and we would be no wiser. 

Suppose the original continuous function is 

{ (w) =  D sin (2�v0w) = (4.7) 

It follows immediately from the definition of the � function that �
l 

{̂ (v) =  {� (v + v0) � � (v v0)} = (4.8)
2 

� 

If we choose �w ?  1@2v0, we  obtain  the  ��functions in the baseband at the correct frequency. We ignore 

the ��functions outside the baseband because we know them to be spurious. But suppose we choose, 

either knowing what we are doing, or in ignorance, �w A  1@2v0. Then (4.6) tells us that it will appear, 

spuriously, at 

v = vd = v0 ± p@�w> |vd| � 1@2�w (4.9) 

thus determining p= The phenomenon of having a periodic function appear at an incorrect, lower fre-

quency, because of insu!ciently rapid sampling, is called “aliasing” (and is familiar through the strobo-

scope e�ect, as seen for example, in movies of turning wagon wheels). 




