
CHAPTER 1 

Frequency Domain Formulation 

1. Fourier Transforms and Delta Functions 

“Time” is the physical variable, written as w, although it may well be a spatial coordinate. Let 

{ (w) > |  (w) > etc. be real, continuous, well-behaved functions. The meaning of “well-behaved” is not 

so-clear. For Fourier transform purposes, it classically meant among other requirements, that Z 4 
2|{ (w)| ? 4= (1.1) 

�4 

Unfortunately such useful functions as { (w) =  sin (2�w@W ) > or 

{ (w) =  K (w) =  0> w  ?  0 

= 1> w  0 (1.2)� 

are excluded (the latter is the unit step or Heaviside function). We succeed in including these and 

other useful functions by admitting the existence and utility of Dirac �-functions. (A textbook would 

specifically exclude functions like sin (1@w) = In general, such functions do not appear as physical signals 

and I will rarely bother to mention the rigorous mathematical restrictions on the various results.) 

The Fourier transform of { (w) will be written as Z 
ˆF ({ (w)) � { (v) =  

4 

{ (w) h�2�lvw gw= (1.3) 
�4 

It is often true that Z 4 

{ (v) h2�lvw gv � F �1 (ˆ{ (w) =  ˆ { (v)) = (1.4) 
�4 

Other conventions exist, using radian frequency ($ = 2�v)> and/or reversing the signs in the exponents 

of (1.3, 1.4). All are equivalent (I am following Bracewell’s convention). 

Exercise. The Fourier transform pair (1.3, 1.4) is written in complex form. Re-write it as cosine and 

sine transforms where all operations are real. Discuss the behavior of {̂ (v) when { (w) is an even and odd 

function of time. 

Define � (w) such that Z 4 

{ (w0) =  { (w) � (w0 � w) gw (1.5) 
�4 

It follows immediately that 

F (� (w)) = 1 (1.6) 

1 
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and therefore that Z Z4 

� (w) =  h2�lvw gv = 
4 

cos (2�vw) gv= (1.7) 
�4 �4 

Notice that the ��function has units; Eq. (1.5) implies that the units of � (w) are 1@w so that the equation 

works dimensionally. 

Definition. A “sample” value of { (w) is { (wp) > the value at the specific time w = wp = 

We can write, in seemingly cumbersome fashion, the sample value as Z 4 

{ (wp) =  { (w) � (wp � w) gw (1.8) 
�4 

This expression proves surprisingly useful. 

Exercise. With { (w) real, show that 

{ (�v) =  ̂ˆ { (v)� 
(1.9) 

where � denotes the complex conjugate. 

Exercise. d is a constant. Show that ³ ´1 v 
F ({ (dw)) = {̂ = (1.10)

|d| d 

This is the scaling theorem. 

Exercise. Show that 

F ({ (w d)) = h�2�ldv {̂ (v) = (1.11)� 

(shift theorem). 

Exercise. Show that µ ¶
g{ (w)

F = 2�lv{̂ (v) = (1.12) 
gw 

(di�erentiation theorem). 

Exercise. Show that 

F ({ (�w)) = {̂ (v)� (1.13) 

(time-reversal theorem) 

Exercise. Find the Fourier transforms of cos 2�v0w and sin 2�v0 w. Sketch and describe them in terms 

of real, imaginary, even, odd properties. 

Exercise. Show that if { (w) =  { (�w) > that is, { is an “even-function”, then 

{ (v) =  ̂ˆ { (�v) > (1.14) 

and that it is real.  Show  that  if  { (w) =  �{ (�w) > (an “odd-function”), then 

{ (v) =  ̂ˆ { (�v)� > (1.15) 

and it is pure imaginary. 
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Note that any function can be written as the sum of an even and odd-function 

{ (w) = {h (w) + {r (w) 

1 1 
{h (w) =  

2
({ (w) + { (�w)) > {r (w) =  

2
({ (w)� { (�w)) = (1.16) 

Thus, 

{̂ (v) = {̂h (v) + {̂r (v) = (1.17) 

There are two fundamental theorems in this subject. One is the proof that the transform pair (1.3,1.4) 

exists. The second is the so-called convolution theorem. Define Z 
0k (w) =  

4 

i (w 0) j (w w ) gw 0 (1.18)�
�4 

where k (w) is said to be the “convolution” of i with j= The convolution theorem asserts: 

k (v) = î (v) ˆˆ j (v) = (1.19) 

Convolution is so common that one often writes k = i � j= Note that it follows immediately that 

i � j = j � i= (1.20) 

Exercise. Prove that (1.19) follows from (1.18) and the definition of the Fourier transform. What is 

the Fourier transform of { (w) | (w)? 

Exercise. Show that if, Z 
0 0k (w) =  

4 

i (w 0) j (w + w ) gw (1.21) 
�4 

then 

k̂ (v) = î (v)� ĵ (v) (1.22) 

k (w) is said to be the “cross-correlation” of i and j> written here as k = i 
 j= Note that i 6 i=
 j = j 
 

If j = i> then (1=21) is called the “autocorrelation” of i (a better name is “autocovariance”, but the 

terminology is hard to displace), and its Fourier transform is, ¯ ¯2 ¯
k̂ (v) = ¯̄ î (v)¯ (1.23) 

and is called the “power spectrum” of i (w) = 

Exercise: Find the Fourier transform and power spectrum of ( 
1> |w| � 1@2 

� (w) = (1.24) 
0> |w| A 1@2= 

Now do the same, using the scaling theorem, for � (w@W ) = Draw a picture of the power spectrum. 

One of the fundamental Fourier transform relations is the Parseval (sometimes, Rayleigh) relation: Z Z4 
2 

4 
2{ (w) gw = |{̂ (v)| gv= (1.25) 

�4 �4 
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Figure 1. An e�ect of convolution is for a “smooth” function to reduce the high fre-

quency oscillations in the less smooth function. Here a noisy curve (a) is convolved 

with a smoother curve (b) to produce the result in (c), where the raggedness of the 

the noisy function has been greatly reduced. (Technically here, the function in (c) is a 

low-pass filter. No normalization has been imposed however; consider the magnitude of 

(c) compared to (a).) 

Exercise. Using the convolution theorem, prove (1.25). 

Exercise. Using the definition of the ��function, and the di�erentiation theorem, find the Fourier 

transform of the Heaviside function K (w) = Now by the same procedure, find the Fourier transform of the 

sign function, ( 
1> w ? 0 

signum (w) =  sgn (w) =  
�

> (1.26) 
1> w A 0 

and compare the two answers. Can both be correct? Explain the problem. (Hint: When using the 

di�erentiation theorem to deduce the Fourier transform of an integral of another function, one must be 

aware of integration constants, and in particular that functions such as v� (v) = 0  can always be added 

to a result without changing its value.) Solution: 

l 
F (sgn (w)) = 

�
=	 (1.27) 

�v 

Often one of the functions i (w), j (w) is  a long “wiggily” curve,  (say)  j (w) and the other, i (w) 

is comparatively simple and compact, for example as shown in Fig. 1 The act of convolution in this 

situation tends to subdue the oscillations in and other structures in j (w). In this situation i (w) is usually 

called a “filter”, although which is designated as the filter is clearly an arbitrary choice. Filters exist 

for and are designed for, a very wide range of purposes. Sometimes one wishes to change the frequency 
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content of j (w) > leading to the notion of high-pass, low-pass, band-pass and band-rejection filters. Other 

filters are used for prediction, noise suppression, signal extraction, and interpolation. 

Exercise. Define the “mean” of a function to be, Z 4 

p = i (w) gw>	 (1.28) 
�4 

and its “variance”, Z 
2 

4 
2(�w) = (w � p) i (w) gw=	 (1.29) 

�4 

Show that 
1 

�w�v =	 (1.30)� 
4� 

This last equation is known as the “uncertainty principle” and occurs in quantum mechanics as the Heisen-

berg Uncertainty Principle, with momentum and position being the corresponding Fourier transform 

domains. You will need the Parseval Relation, the di�erentiation theorem, and the Schwarz Inequality: ¯Z ¯ 4	 ¯2 Z Z ¯ 4 
2 

4 
2 ¯ i (w) j (w) gw¯ |i (w)| gw |j (w)| gw=	 (1.31) ¯	 ¯ �

�4	 �4 �4 

The uncertainty principle tells us that a narrow function must have a broad Fourier transform, and 

vice-versa with “broad” being defined as being large enough to satisfy the inequality. Compare it to the 

scaling theorem. Can you find a function for which the inequality is actually equality? 

1.1. The Special Role of Sinusoids. One might legitimately inquire as to why there is such 

a specific focus on the sinusoidal functions in the analysis of time series? There are, after all, many 

other possible basis functions (Bessel, Legendre, etc.). One important motivation is their role as the 

eigenfunctions of extremely general linear, time-independent systems. Define a a linear system as an 

operator L (·) operating on any input, { (w) = L can be a physical “black-box” (an electrical circuit, a 

pendulum, etc.), and/or can be described via a di�erential, integral or finite di�erence, operator. L 

operates on its input to produce an output: 

| (w) = L ({ (w) > w) =	 (1.32) 

It is “time-independent” if L does not depend explicitly on w> and it is linear if 

L (d{ (w) + z (w) > w) = dL ({ (w) > w) + L (z (w) > w)	 (1.33) 

for any constant d= It is “causal” if for { (w) = 0> w  ?  w0, L ({ (w)) = 0> w  ?  w0. That is, there is no response 

prior to a disturbance (most physical systems satisfy causality). 

Consider a general time-invariant linear system, subject to a complex periodic input: ¡
| (w) = L h2�lv0 w 

¢ 
=	 (1.34) 

Suppose we introduce a time shift, ³ ´ 
| (w + w0) = L h2�lv0 (w+w0 ) =	 (1.35) 
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Now set w = 0> and 

¡ ¡
h2�lv0w0 

¢ 
= h2�lv0w0 L h2�l0vw=0

¢ 
= h2�lv0 w0 L (1) =| (w0) = L (1.36) 

Now L (1) is a constant (generally complex). Thus (1=36) tells us that for an input function h2�lv0 w0 > 

with both v0> w0 completely arbitrary, the output must be another pure sinusoid–at exactly the same 

period–subject only to a modfication in amplitude and phase. This result is a direct consequence of the 

linearity and time-independence assumptions. Eq. (1.36) is also a statement that any such exponential is 

thereby an eigenfunction of L> with eigenvalue L (1) = It is a very general result that one can reconstruct 

arbitrary linear operators from their eigenvalues and eigenfunctions, and hence the privileged role of 

sinusoids; in the present case, that reduces to recognizing that the Fourier transform of | (w0) would be 

that of L which would thereby be fully determined. (One can carry out the operations leading to (1.36) 

using real sines and cosines. The algebra is more cumbersome.) 

1.2. Causal Functions and Hilbert Transforms. Functions that vanish before w = 0  are said 

to be “causal”. By a simple shift in origin, any function which vanishes for w ? w0 can be reduced to a 

causal one, and it su!ces to consider only the special case, w0 = 0= The reason for  the importance of these  

functions is that most physical systems obey a causality requirement that they should not produce any 

output, before there is an input. (If a mass-spring oscillator is at rest, and then is disturbed, one does 

not expect to see it move before the disturbance occurs.) Causality emerges as a major requirement for 

functions which are used to do prediction–they cannot operate on future observations, which do not yet 

exist, but only on the observed past. 

Consider therefore, any function { (w) = 0> w  ?  0= Write it as the sum of an even and odd-function, ( 
{h (w) + {r (w) =  1 2 ({ (w)� { (�w)) 

(1.37)2 ({ (w) + { (�w)) + 1 

{ (w) =
= 0> w  ?  0> 

but neither {h (w) > nor {r (w) vanishes for w ?  0> only their sum. It follows from (1.37) that 

{r (w) = vjq (w){h (w) (1.38) 

and that 

{ (w) = (1 + vjq (w)){h (w) = (1.39) 

Fourier transforming (1.39), and using the convolution theorem, we have 

l 
{̂ (v) =  ̂{h (v) +  

�
�v 
� {̂h (v) (1.40) 

using the Fourier transform for vjq (w) = 

Because {̂h (v) is real, the imaginary part of {̂ (v) must be 

Im ({̂ (v)) = {̂r (v) =  
�1 
�v 
� {̂h (v) = � 

1 
� 

Z 4 

�4 

{̂h (v
0) 

v � v0 
gv 0 = (1.41) 
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Re-writing (1.39) in the obvious way in terms of {r (w) > we can similarly show, Z 
1 4 {r (v

0)ˆ 0{̂h (v) =  
0 
gv = (1.42) 

� v v�4 � 

Eqs. (1.41, 1.42) are a pair, called Hilbert transforms. Causal functions thus have intimately connected 

real and imaginary parts of their Fourier transforms; knowledge of one determines the other. These 

relationships are of great theoretical and practical importance. An oceanographic application is discussed 

in Wunsch (1972). 

The Hilbert transform can be applied in the time domain to a function { (w) > whether causal or not. 

Here we follow Bendat and Piersol (1986, Chapter 13). Define Z 
{K (w) =  

1 4 { (w0) 0 

w0 
gw (1.43) 

� w�4 � 

and { (w) can be recovered from {K (w) by the inverse Hilbert transform (1.42). Eq. (1.43) is the convo-

lution 

{K (w) =  { (w) � 1 (1.44) 
�w 

and by the convolution theorem, 

{K (v) =  ̂ˆ { (v) (�l sgn(v)) (1.45) 

using the Fourier transform of the signum function. The last expression can be re-written as (
{K (v) =  ̂

exp (�l�@2) > v  ?  0 
ˆ { (v) > (1.46) 

exp (l�@2) > v  A  0 

that is, the Hilbert transform in time is equivalent to phase shifting the Fourier transform of { (w) by �@2 

for positive frequencies, and by -�@2 for negative ones. Thus {K (w) has the same frequency content of 

{ (w) > but is phase shifted by 90�= It comes as no surprise therefore, that if e.g., { (w) =  cos (2�v0w) > then 

{K (w) = sin (2�v0w) = Although we do not pursue it here (see Bendat and Piersol, 1986), this feature of 

Hilbert transformation leads to the idea of an “analytic signal”, 

| (w) =  { (w) + l{K (w) (1.47) 

which proves useful in defining an “instantaneous frequency”, and in studying the behavior of wave 

propagation including the idea (taken up much later) of complex empirical orthogonal functions. 

Writing the inverse transform of a causal function, Z 4 

{ (v) h2�lvw{ (w) =  ˆ gv> (1.48) 
�4 

one might, if {̂ (v) is suitably behaved, attempt to evaluate this transform by Cauchy’s theorem, as ( P 
2�l (residues of the lower half-v-plane, ) > w  ?  0 

{ (w) =  P (1.49) 
2�l (residues of the upper half-v-plane, ) > w  A  0 
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Since the first expression must vanish, if {̂ (v) is a rational function, it cannot have any poles in the lower-

half-v�plane; this conclusion leads immediately so-called Wiener filter theory, and the use of Wiener-Hopf 

methods. 

1.3. Asymptotics. The gain of insight into the connections between a function and its Fourier 

transform, and thus developing intuition, is a very powerful aid to interpreting the real world. The 

scaling theorem, and its first-cousin, the uncertainty principle, are part of that understanding. Another 

useful piece of information concerns the behavior of the Fourier transform as |v| $4= The classical result 
is the Riemann-Lebesgue Lemma. We can write Z 

2�lvw î (v) =  
4 

i (w) h� gw= (1.50) 
�4 

where here, i (w) is assumed to satisfy the classical conditions for existence of the Fourier transform pair. 

Let w0 = w 1@ (2v) > (note the units are correct) then by a simple change of variables rule, � ¶Z µ
0î (v) =  � 

4 

i w +
1 
h�2�lvw 

0 

gw 0 (1.51)
2v�4 

(exp (�l�) =  �1) and taking the average of these last two expressions, we have, ¶ ¯¯ Z Z µ¯ ¯ ¯ ¯ ¯ 4 ¯ ¯ î (v)¯ = 
¯ 1 

i (w) h�2�lvw gw � 
1 4 

i w +
1 
h�2�lvw gw¯ ¯ 2 ¯2 2v Z 

�4¯ µ ¶¯ �4 

1 4 ¯ 1 ¯ ¯ ¯ � 
2 

i (w) � i w + gw $ 0> (1.52) ¯ as v $4¯ 2v�4 

because the di�erence between the two functions becomes arbitrarily small with increasing |v| = 

This result tells us that for classical functions, we are assured that for su!ciently large |v| the 

Fourier transform will go to zero. It doesn’t however, tell us how fast it does go to zero. A general theory 

is provided by Lighthill (1958), which he then builds into a complete analysis system for asymptotic 

evaluation. He does this essentially by noting that functions such as K (w) have Fourier transforms which 

for large |v| are dominated by the contribution from the discontinuity in the first derivative, that is, 

for large v> K (v) $ 1@v (compare to vljqxp (w))= Consideration of functions whose first derivatives are 

continuous, but whose second derivatives are discontinuous, shows that they behave as 1@v2 for large |v| ; 

in general if the q � wk derivative is the first discontinuous one, then the function behaves asymptotically 

as 1@ |v|q 
. These are both handy rules for what happens and useful for evaluating integrals at large v (or 

large distances if one is going from Fourier to physical space). Note that even the �-function fits: its 0 th�
derivative is discontinuous (that is, the function itself ), and its asymptotic behavior is 1@v0 = constant; 

it does not decay at all as it violates the requirements of the Riemann-Lebesgue lemma. 
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2. Fourier Series and Time-Limited Functions 

Suppose { (w) is periodic: 

{ (w) =  { (w + W ) (2.1) 

Define the complex Fourier coe!cients as 

µ ¶
1 
Z W@2 2�lqw 

�q = { (w) exp  
�

gw (2.2)
W 

Then under very general conditions, one can represent { (w) in a Fourier Series: 

W �W@2 

µ ¶4X 2�lqw 
{ (w) =  �q exp = (2.3)

W 
q=�4 

Exercise. Write { (w) as a Fourier cosine and sine series. 

The Parseval Theorem for Fourier series is 

1 
Z W@2 X 

2 
4

2{ (w) gw = |dq| > (2.4)
W �W@2 q=�4 

and which follows immediately from the orthogonality of the complex exponentials over interval W=  

Exercise. Prove the Fourier Series versions of the shift, di�erentiation, scaling, and time-reversal 

theorems. 

Part of the utility of ��functions is that they permit us to do a variety of calculations which are not 

classically permitted. Consider for example, the Fourier transform of a periodic function, e.g., any { (w) 

as in Eq. (2.3), Z X X4
{̂ (v) =  

4 4
�qh

(2�lqw@W )h�2�lvw gw = �q� (v � q@W ) > (2.5) 
q= q=�4 �4 �4 

ignoring all convergence issues. We thus have the nice result that a periodic function has a Fourier 

transform; it has the property of vanishing except precisely at the usual Fourier series frequencies where 

its value is a ��function with amplitude equal to the complex Fourier series coe!cient at that frequency. 

Suppose that instead, 

{ (w) =  0> |w| � W@2 (2.6) 

that is, { (w) is zero except in the finite interval �W@2 � w � W@2 (this is called a “time-limited” function). 

The following elementary statement proves to be very useful. Write { (w) as a Fourier series in |w| ? W  @2> 

and as zero elsewhere: ( P
{ (w) =  q=�4 �q exp (2�lqw@W ) > |w| � W@24 

(2.7) 
0> |w| A W  @2 

where µ ¶
1 
Z W@2 2�lqw 

�q = { (w) exp  
W �W@2 

� 
W 

gw> (2.8) 
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as though it were actually periodic. Thus as defined, { (w) corresponds to some di�erent, periodic function, 

in the interval |w| � W@2> and is zero outside. { (w) is perfectly defined by the special sinusoids with 

frequency vq = q@W > q = 0> ±1> === 4. 
The function { (w) isn’t periodic and so its Fourier transform can be computed in the ordinary way, Z W@2 

{ (w) h�2�lvw {̂ (v) =  gw= (2.9) 
�W@2 

and then, Z 4 

{ (v) h2�lvw { (w) =  ˆ gv= (2.10) 
�4 

We observe that {̂ (v) is defined at all frequencies v> on the continuum from 0 to ±4= If we look at the 

special frequencies v = vq = q@W > corresponding to the Fourier series representation (2.7), we observe 

that 

{̂ (vq) =  W�q = 
1 
�q = (2.11)

1@W 

That is, the Fourier transform at the special Fourier series frequencies, di�ers from the corresponding 

Fourier series coe!cient by a constant multiplier. The second equality in (2.11) is written specifically to 

show that the Fourier transform value {̂ (v) > can be thought of as an amplitude density per unit frequency, 

with the �q being separated by 1@W in frequency. 

The information content of the representation of { (w) in (2.7) must be the same as in (2.10), in the 

sense that { (w) is perfectly recovered from both. But there is a striking di�erence in the apparent e!ciency 

of the forms: the Fourier series requires values (a real and an imaginary part) at a countable infinity of 

frequencies, while the Fourier transform requires a value on the line continuum of all frequencies. One 

infers that the sole function of the infinite continuum of values is to insure what is given by the second 

line of Eq. (2.7): that the function vanishes outside |w| � W@2= Some thought suggests the idea that 

one ought to be able to calculate the Fourier transform at any frequency, from its values at the special 

Fourier series frequencies, and this is both true, and a very powerful tool. 

Let us compute the Fourier transform of { (w) > using the form (2.7): µ ¶Z W@2 X4 2�lqw 
{̂ (v) =  �q exp exp (2�lvw) gw (2.12) 

�W@2 W 
q=�4 

and assuming we can interchange the order of integration and summation (we can), 

X 
{ (v) =  W 

4
�q 
sin (�W (q@W � v))

ˆ
�W (q@W � v)

q=�4 X4
{ (vq) 

sin (�W (q@W � v)) 
= ˆ > (2.13)

�W (q@W � v)
q=�4 

{ (v) =  ̂using Eq. (2.11). Notice that as required ˆ { (vq) =  W�q>when v = vq> but in between these values, 

{̂ (v) is a weighted (interpolated) linear combination of all of the Fourier Series components. 
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Exercise. Prove by inverse Fourier transformation that any sum 

X 
{ (v) =  

4
�q 
sin (�W (q@W � v))

ˆ > (2.14)
�W (q@W � v)

q=�4 

where �q are arbitrary constants, corresponds to a function vanishing w A  |W@2| > that is, a time-limited 

function. 

The surprising import of (2.13) is that the Fourier transform of a time-limited function can be 

perfectly reconstructed from a knowledge of its values at the Fourier series frequencies alone. That means, 

in turn, that a knowledge of the countable infinity of Fourier coe!cients can reconstruct the original 

function exactly. Putting it slightly di�erently, there is no purpose in computing a Fourier transform at 

frequency intervals closer than 1@W where W is either the period, or the interval of observation. 

3. The Sampling Theorem 

We have seen that a time-limited function can be reconstructed from its Fourier coe!cients. The 

reader will probably have noticed that there is symmetry between frequency and time domains. That is 

to say, apart from the assignment of the sign of the exponent of exp (2�lvw) > the v and w domains are 

essentially equivalent. For many purposes, it is helpful to use not w> v with their physical connotations, 

but abstract symbols like t> u= Taking the lead from this inference, let us interchange the w> v domains in 

the equations (2.6, 2.13), making the substitutions w $ v> v $ w> W $ 1@�w> {̂ (v) $ { (w) =. We  then  have,  

{̂ (v) =  0> v  1@2�w (3.1)� 

X4
{ (p�w) 

sin (� (p � w@�w))
{ (w) =  

� (p � w@�w)
p=�4 X 

= 
4
{ (p�w) 

sin ((�@�w) (w � p�w)) 
= (3.2)

(�@�w) (w � p�w)
p=�4 

This result asserts that a function bandlimited to the frequency interval |v| � 1@2�w (meaning that its 

Fourier transform vanishes for all frequencies outside of this baseband ) can be perfectly reconstructed by 

samples of the function at the times p�w= This result (3.1,3.2) is the famous Shannon sampling theorem. 

As such, it is an interpolation statement. It can also be regarded as a statement of information content: 

all of the information about the bandlimited continuous time series is contained in the samples. This 

result is actually a remarkable one, as it asserts that a continuous function with an uncountable infinity 

of points can be reconstructed from a countable infinity of values. 

Although one should never use (3.2) to interpolate data in practice (although so-called sinc methods 

are used to do numerical integration of analytically-defined functions), the implications of this rule are 

very important and can be stated in a variety of ways. In particular, let us write a general bandlimiting 

form: 
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{̂ (v) = 0> v  (3.3)� vf 

If (3=3) is valid, it su!ces to sample the function at uniform time intervals �w 1@2vf (Eq. 3.1 is clearly � 

then satisfied.). 

Exercise. Let �w = 1= {  (w) is measured at all times, and found to vanish, except for w = p = 0> 1> 2> 3 

and the values are [1> 2> �1> �1] = Calculate the values of { (w) at intervals �w@10 from 5 w 5 and� � � 

plot it. Find the Fourier transform of { (w) = 

The consequence of the sampling theorem for discrete observations in time is that there is no purpose 

in calculating the Fourier transform for frequencies larger in magnitude than 1@(2�w)= Coupled with the 

result for time-limited functions, we conclude that all of the information about a finite sequence of Q 

observations at intervals �w and of duration, (Q � 1)�w is contained in the baseband |v| � 1@2�w> at 

frequencies vq = q@ (Q �w) = 

There is a theorem (owing to Paley and Wiener) that a time-limited function cannot be band-limited, 

and vice-versa. One infers that a truly time-limited function must have a Fourier transform with non-zero 

values extending to arbitrarily high frequencies, v= If such a function is sampled, then some degree of 

aliasing is inevitable. For a truly band-limited function, one makes the required interchange to show that 

it must actually extend with finite values to w = ±4= Some degree of aliasing of real signals is therefore 
inevitable. Nonetheless, such aliasing can usually be rendered arbitrarily small and harmless; the need 

to be vigilant is, however, clear. 

3.1. Tapering, Leakage, Etc. Suppose we have a continuous cosine { (w) =  cos  (2�s1w@W1) = Then 

the true Fourier transform is 
1 

{̂ (v) =  {� (v s1) +  � (v + s1)} = (3.4)
2 

� 

If it is observed (continuously) over the interval �W@2 � w � W@2> then we have the Fourier transform of 

{� (w) =  { (w) � (w@W ) (3.5) 

and which is found immediately to be ½ ¾ 
W sin (�W (v s1)) sin (�W (v + s1))

{̂� (v) =  (3.6)
� 

+ 
2 (�W (v s1)) (�W (v + s1))� 

The function 

sinc(Ts) = sin  (�W v) @ (�W v) > (3.7) 

plotted in Fig. (2), is ubiquitous in time series analysis and worth some study. Note that in (3.6) there is 

a “main-lobe” of width 2@W (defined by the zero crossings) and with amplitude maximum W . To  each  side  

of the main lobe, there is an infinite set of diminishing “sidelobes” of width 1@W between zero crossings. 

Let us suppose that s1 in (3.4) is chosen to be one of the special frequencies vq = q@W > W = Q �w> in 

particular, s1 = s@W= Then (3.6) is a sum of two sinc functions centered at vs = ±s@W= A very  important  

feature is that each of these functions vanishes identically at all other special frequencies vq> q  6= s= If 
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Figure 2. The function, sinc(vW ) =  sin (�vW ) @ (�vW ) > (solid line) which is the Fourier 

transform of a pure exponential centered at that corresponding frequency. Here W = 1= 

Notice that the function crosses zero whenever v = p> which corresponds to the Fourier 

frequency separation. The main lobe has width 2> while successor lobes have width 1, 

with  a decay rate only as fast as  1@ |v| = The function sinc2 (v@2) (dotted line) decays as 
2

1@ |v| , but its main lobe appears, by the scaling theorem, with twice the width of that 

of the sinc(v) function. 

we confine ourselves, as the inferences of the previous section imply, to computing the Fourier transform 

at only these special frequencies, we would see only a large value W at v = vs and zero at every other 

such frequency. (Note that if we convert to Fourier coe!cients by division by 1@W > we obtain the proper 

values.) The Fourier transform does not vanish for the continuum of frequencies v 6= vq, but it could be 

obtained from the sampling theorem. 

Now suppose that the cosine is no longer a Fourier harmonic of the record length. Then computation 

of the Fourier transform at vq no longer produces a zero value; rather one obtains a finite value from (3.6). 

In particular, if s1 lies halfway between two Fourier harmonics, q@W � s1 � (q + 1) @W , |ˆ { (vq+1)|{ (vq)| > |ˆ

will be approximately equal, and the absolute value of the remaining Fourier coe!cients will diminish 

roughly as 1@ |q � p| = The words “approximately” and “roughly” are employed because there is another 

sinc function at the corresponding negative frequencies, which generates finite values in the positive half 

of the v�axis. The analyst will not be able to distinguish the result (a single pure Fourier frequency in 

between vq> vq+1) from the possibility that there are two pure frequencies present at vq> vq+1. Thus  we  

have what is sometimes called “Rayleigh’s criterion”: that to separate, or “resolve” two pure sinusoids, 

at frequencies s1> s2> their frequencies must di�er by 

1 
> =  (3.8)|s1 � s2| � 
W 
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Figure 3. Interference pattern from a cosine, showing how contributions from positive 

and negative frequencies add and subtract. Each vanishes at the central frequency plus 

1@W and at all other intervals separated by 1@W= 

or precisely by a Fourier harmonic; see Fig. 3. (The terminology and criterion originate in spectroscopy 

where the main lobe of the sinc function is determined by the width, O> of a physical slit playing the role 

of W=) 

The appearance of the sinc function in the Fourier transform (and series) of a finite length record 

has some practical implications (note too, that the sampling theorem involves a sum over sinc functions). 

Suppose one has a very strong sinusoid of amplitude D> at frequency s> present in a record, { (w) whose 

Fourier transform otherwise has a magnitude which is much less than D= If  one is attempting to estimate  

{̂ (v) apart from the sinusoid, one sees that the influence of D (from both positive and negative frequency 

contributions) will be additive and can seriously corrupt {̂ (v) even at frequencies far from v = s= Such 

e�ects are known as “leakage”. There are basically three ways to remove this disturbance. (1) Subtract 

the sinusoid from the data prior to the Fourier analysis. This is a very common procedure when dealing, 

e.g., with tides in sealevel records, where the frequencies are known in advance to literally astronomical ¯ ¯ 
precision, and where|{̂ (vs)|

2 ¯D2¯ may be many orders of magnitude larger than its value at other � 

frequencies. (2) Choose a record length such that s = q@W ; that is, make the sinusoid into a Fourier 

harmonic and rely on the vanishing of the sinc function to suppress the contribution of D at all other 

frequencies. This procedure is an e�ective one, but is limited by the extent to which finite word length 

computers can compute the zeros of the sinc and by the common problem (e.g., again for tides) that 

several pure frequencies are present simultaneously and not all can be rendered simultaneously as Fourier 

harmonics. (3) Taper the record. Here one notes that the origin of the leakage problem is that the 

sinc diminishes only as 1@v as one moves away from the central frequency. This slow reduction is in turn 
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Figure 4. “Tophat”, or � (w) (solid) and “triangle” or � (w@2). A finite record can be

regarded as the product { (w)� (w@W ) > giving rise to the sinc pattern response. If this

finite record is tapered by multiplying it as { (w)� (w@ (2W )) , the Fourier transform decays

much more rapidly away from the central frequency of any sinusoids present.

easily shown to arise because the � function in (3.5) has finite steps in value (recall the Riemann-Lebesgue

Lemma.)

Suppose we “taper” {� (w) > by multiplying it by the triangle function (see Bracewell, 1978, and Fig.

4),

� (w) = 1� |w| > w � 1 (3.9)

= 0> |w| A 1 (3.10)

whose first derivative, rather than the function itself is discontinuous. The Fourier transform

�̂ (v) =
sin2 (�v)

(�v)
2 = sinc2 (v) (3.11)

is plotted in Fig. 2). As expected, it decays as 1@v2. Thus if we Fourier transform

{� (w) = { (w)� (w@ (W@2)) (3.12)

the pure cosine now gives rise to

{̂� (v) =
W

2

(
sin2 ((�@2)W (v� s1))
((�@2)W (v� s1))2

+
sin2 ((�@2)W (v+ s1))

((�@2)W (v+ s1))
2

)
(3.13)

and hence the leakage diminishes much more rapidly, whether or not we have succeeded in aligning

the dominant cosine. A price exists however, which must be paid. Notice that the main lobe of

F (� (w@ (W@2))) has width not 2@W> but 4@W , that is, it is twice as wide as before, and the resolu-

tion of the analysis would be 1/2 of what it was without tapering. Thus tapering the record prior to

Fourier analysis incurs a trade-o� between leakage and resolution.
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One might sensibly wonder if some intermediate function between the � and � functions exists so 

that one diminishes the leakage but without incurring a resolution penalty as large as a factor of 2. 

The answer is “yes”; much e�ort has been made over the years to finding tapers z (w), whose  Fourier  
ˆtransforms Z (v) have desirable properties. Such taper functions are called “windows”. A common one 

tapers the ends by multiplying by half-cosines at either end, cosines whose periods are a parameter of 

the analysis. Others go under the names of Hamming, Hanning, Bartlett, etc. windows. 

Later we will see that a sophisticated choice of windows leads to the elegant recent theory of multitaper 

spectral analysis. At the moment, we will only make the observation that the � taper and all other tapers, 

has the e�ect of throwing away data near the ends of the record, a process which is always best regarded 

as perverse: one should not have to discard good data for a good analysis procedure to work. 

Although we have discussed leakage etc. for continuously sampled records, completely analogous 

results exist for sampled, finite, records. We leave further discussion to the references. 

Exercise. Generate a pure cosine at frequency v1> and period W1 = 2�@v1 = Numerically compute its 

Fourier transform, and Fourier series coe!cients, when the record length, W =integer ×W1> and when it  

is no longer an integer multiple of the period. 

4. Discrete Observations 

4.0.1. Sampling. The above results show that a band-limited function can be reconstructed perfectly 

from an infinite set of (perfect) samples. Similarly, the Fourier transform of a time-limited function can 

be reconstructed perfectly from an infinite number of (perfect) samples (the Fourier Series frequencies). 

In observational practice, functions must be both band-limited (one cannot store an infinite number of 

Fourier coe!cients) and time-limited (one cannot store an infinite number of samples). Before exploring 

what this all means, let us vary the problem slightly. Suppose we have { (w) with Fourier transform {̂ (v) 

and we sample { (w) at uniform intervals p�w without paying attention, initially, as to whether it is 

band-limited or not. What is the relationship between the Fourier transform of the sampled function and 

that of { (w)? That is, the above development does not tell us how to compute a Fourier transform from 

a set of samples. One could use (3=2) > interpolating before computing the Fourier integral. As it turns 

out, this is unnecessary. 

We need some way to connect the sampled function with the underlying continuous values. The 

��function proves to be the ideal representation. Eq. (2.13) produces a single sample at time wp = The 

quantity, X4
{LLL (w) =  { (w) � (w � q�w) > (4.1) 

q=�4 

vanishes except at w = t�w for any integer t= The value associated with {LLL (w) at that time is found 

by integrating it in an infinitesimal interval �% + t�w w % + t�w and one finds immediately that � � 

{LLL (t�w) =  { (t�w) = Note that all measurements are integrals over some time interval, no matter how 
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short (perhaps nanoseconds). Because the ��function is infinitesimally broad in time, the briefest of 

measurement integrals is adequate to assign a value.1= 

Let us Fourier analyze {LLL (w) > and evaluate it in two separate ways: 

(I) Direct sum. Z X4
{̂LLL (v) =  

4 

{ (w) � (w � p�w) h�2�lvw gw 
p=�4 �4 X4

= { (p�w) h�2�lvp�w = (4.2) 
p=�4 

(II) By convolution. Ã ! X4
{LLL (v) = ˆˆ { (v) � F � (w � p�w) = (4.3) 

p=¡P ¢ �4 

What is F 4 
�4 � (w � p�w) ? We have, by direct integration, p= Ã ! X X4 4

F � (w � p�w) = h�2�lpv�w (4.4) 
p= p=�4 �4 

What function is this? The right-hand-side of (4.4) is clearly a Fourier series for a function periodic 

with period 1@�w> in v= I assert that the  periodic  function  is  �w� (v) > and the reader should confirm that 

computing the Fourier series representation of �w� (v) in the v�domain, with period 1@�w is exactly (4.4). 

But such a periodic � function can also be written2 �
X4

�w � (v � q@�w) (4.5) 
q=�4 

Thus (4.3) can be written 

X4
{LLL (v) = ˆˆ { (v) � �w � (v � q@�w) 

q=�4 Z X4
ˆ 0= 

4 

{ (v 0)�w � (v � q@�w v ) gv 0 � 
q=�4 �4 X ³ ´4
q

ˆ= �w { v (4.6)� 
�w 

q=�4 

We now have two apparently very di�erent representations of the Fourier transform of a sampled 

function. (I) Asserts two important things. The Fourier transform can be computed as the naive dis-

cretization of the complex exponentials (or cosines and sines if one prefers) times the sample values. 

Equally important, the result is a periodic function with period 1@�w= (Figure 5). Form (II) tells us that 

1�3functions are meaningful only when integrated. Lighthill (1958) is a good primer on handling them. Much of the 

book has been boiled down to the advice that, if in doubt about the meaning of an integral, “integrate by parts”. 
2Bracewell (1978) gives a complete discussion of the behavior of these othewise peculiar functions. Note that we 

are ignoring all questions of convergence, interchange of summation and integration etc. Everything can be justified by 

appropriate limiting processes. 
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Figure 5. Real part of the periodic Fourier transform of a sampled function. The 

baseband is defined as 1@2�w v 1@2�w, (here  �w = 1)> but any interval of width � � � 

1@�w is equivalent. These intervals are marked with vertical lines. 
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Figure 6. vd is the position where all Fourier transform amplitudes from the Fourier 

transform values indicated by the dots (Eq. 4.6) will appear. The baseband is indicated 

by the vertical lines and any non-zero Fourier transform values outside this region will 

alias into it. 

the value of the Fourier transform at a particular frequency v is not in general equal to {̂ (v) = Rather 

it is the sum of all values of {̂ (v) separated by frequency 1/�w= (Figure 6). This second form is clearly 

periodic with period 1@�w> consistent with (I). 

Because of the periodicity, we can confine ourselves for discussion, to one interval of width 1@�w= By 

convention we take it symmetric about v = 0> in the range �1@ (2�w) � v 1@ (2�w) which we call the � 
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baseband. We can now address the question of when ˆ { (v)? The {LLL (v) in the baseband will be equal to ˆ

answer follows immediately from (4=6): if, and only if, {̂ (v) vanishes for v � |1@2�w| = That is, the Fourier 

transform of a sampled function will be the Fourier transform of the original continuous function only if 

the original function is bandlimited and �w is chosen to be small enough such that {̂ (|v| A 1@�w) =  0= 

We also see that there is no purpose in computing {̂LLL (v) outside the baseband: the function is perfectly 

periodic. We could use the sampling theorem to interpolate our samples before Fourier transforming. 

But that would produce a function which vanished outside the baseband–and we would be no wiser. 

Suppose the original continuous function is 

{ (w) =  D sin (2�v0w) = (4.7) 

It follows immediately from the definition of the � function that �
l 

{̂ (v) =  {� (v + v0) � � (v v0)} = (4.8)
2 

� 

If we choose �w ?  1@2v0, we  obtain  the  ��functions in the baseband at the correct frequency. We ignore 

the ��functions outside the baseband because we know them to be spurious. But suppose we choose, 

either knowing what we are doing, or in ignorance, �w A  1@2v0. Then (4.6) tells us that it will appear, 

spuriously, at 

v = vd = v0 ± p@�w> |vd| � 1@2�w (4.9) 

thus determining p= The phenomenon of having a periodic function appear at an incorrect, lower fre-

quency, because of insu!ciently rapid sampling, is called “aliasing” (and is familiar through the strobo-

scope e�ect, as seen for example, in movies of turning wagon wheels). 

5. Aliasing 

Aliasing is an elementary result, and it is pervasive in science. Those who do not understand it 

are condemned–as one can see in the literature–to sometimes foolish results (Wunsch, 2000). If one 

understands it, its presence can be benign. Consider for example, the TOPEX/POSEIDON satellite 

altimeter (e.g., Wunsch and Stammer, 1998), which samples a fixed position on the earth with a return 

period (�w) of 9.916 days=237.98 hours (h). The principle lunar semi-diurnal tide (denoted M2) has  a  

period of 12.42 hours. The spacecraft thus aliases the tide into a frequency (from 4=9) 

|vd| = 

¯ ¯ ¯ 1 q 
¯ ¯ ¯ ? 

1 
= (5.1)

12=42h 
� 
237=98h 2 × 237=98h¯ ¯ 

To satisfy the inequality, one must choose q = 19, producing an alias frequency near vd = 1@61.6days, 

which is clearly observed in the data. (The TOPEX/POSEIDON orbit was very carefully designed to 

avoid aliasing significant tidal lines (there are about 40 di�erent frequencies to be concerned about) into 

geophysically important frequencies such as those corresponding to the mean (0 frequency), and the 

annual cycle (see Parke, et al., 1987)). 
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Figure 7. A function (a) with Fourier transform as in (b) is sampled as shown at 

intervals �w> producing a corrupted (aliased) Fourier transform as shown in (c). Modified 

after Press et al. (1992) 

Exercise. Compute the alias period of the principal solar semidiurnal tide of period 12.00 hours as 

sampled by TOPEX/POSEIDON, and for both lunar and solar semidiurnal tides when sampled by an 

altimeter in an orbit which returns to the same position every 35.00 days. 

Exercise. The frequency of the so-called tropical year (based on passage of the sun through the vernal 

equinox) is vw = 1@365=244d. Suppose a temperature record is sampled at intervals �w = 365=25d. What 

is the apparent period of the tropical year signal? Suppose it is sampled at �w = 365=00d (the “common  

year”). What then is the apparent period? What conclusion do you draw? 

Pure sinusoids are comparatively easily to deal with if aliased, as long as one knows their origin. 

Inadequate sampling of functions with more complex Fourier transforms can be much more pernicious. 

Consider the function shown in Figure 7a whose Fourier transform is shown in Figure 7b. When sub-

sampled as indicated, one obtains the Fourier transform in Fig. 7c. If one was unaware of this e�ect, the 

result can be devastating for the interpretation. Once the aliasing has occurred, there is no way to undo 

it. Aliasing is inexorable and unforgiving; we will see it again when we study stochastic functions. 

6. Discrete Fourier Analysis 

The expression (4.2) shows that the Fourier transform of a discrete process is a function of exp (�2�lv) 
and hence is periodic with period 1 (or 1@�w for general �w)= A finite data length means that all of the 

information about it is contained in its values at the special frequencies vq = q@W= If we define 

} = h�2�lv�w (6.1) 
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the Fourier transform is 
W@2 X 

{̂ (v) =  {p}
p (6.2) 

p= �W@2 

¡
¡ ¢ 
h�2�lv ˆ { > ˆWe will write this, somewhat inconsistently interchangeably, as { (v) > ˆ { (}) where the two ¢ 

h�2�lv { (v) is clearly not the same function as ˆ > but the context should latter functions are identical; ˆ { 

make clear what is intended. Notice that {̂ (}) is just a polynomial in }> with negative powers of } 

multiplying {q at negative times. That a Fourier transform (or series—which di�ers only by a constant  

normalization) is a polynomial in exp (� 2�lv) proves to be a simple, but powerful idea. 

Definition. We will use interchangeably the terminology “sequence”, “series” and “time series”, for 

the discrete function {p, whether it is discrete by definition, or is a sampled continuous function. Any 

subscript implies a discrete value. 

Consider for example, what happens if we multiply the Fourier transforms of {p> |p : 
3 43 4 Ã !

W@2 W@2 X X X X 
{ (}) ˆ = k (}) = (6.3)ˆ | (}) = C {p}

pDC |n}
nD = {p|n�p }

n ˆ

p= �W@2 n= �W@2 n p 

That is to say, the product of the two Fourier transforms is the Fourier transform of a new time series, 

X4
kn = {p|n�p> (6.4) 

p=�4 

which is the rule for polynomial multiplication, and is a discrete generalization of convolution. The 

infinite limits are a convenience–most often one or both time series vanishes beyond a finite value. 

More generally, the algebra of discrete Fourier transforms is the algebra of polynomials. We could 

ignore the idea of a Fourier transform altogether and simply define a transform which associates any 

sequence {{p} with the corresponding polynomial (6=2) > or formally 

W@2 X 
{p}

p (6.5){{p} #$ Z ({p) � 
p= �W@2 

The operation of transforming a discrete sequence into a polynomial is called a }� transform. The 

transform coincides with the Fourier transform on the unit circle |}| = 1= If we regard } as a general }� 

complex variate, as the symbol is meant to suggest, we have at our disposal the entire subject of complex 

functions to manipulate the Fourier transforms, as long as the corresponding functions are finite on the 

unit circle. Fig. 8 shows how the complex v� plane, maps into the complex }� plane, the real line in the 

former, mapping into the unit circle, with the upper half-v� plane becoming the interior of |}| = 1  

There are many powerful results. One simple type is that any function analytic on the unit circle 

corresponds to a Fourier transform of a sequence. For example, suppose 

{̂ (}) = Dhd} (6.6) 



22  1.  F  R  E  Q  UENCY  DO  M  A  IN  FO  RM  ULATIO  N  

Figure 8. Relationships between the complex } and v planes. 

Because exp (d}) is analytic everywhere for |}| ? 4> it has a convergent Taylor Series on the unit circle µ ¶
{̂ (}) =  D 1 + d} + d2 }

2 

+ ==== (6.7)
2! 

and hence {0 = D> {1 = Dd> {2 = Dd2@2!> ===Note that {p = 0>p  ?  0. Such a sequence, vanishing for 

negative p> is known as a “causal” one. 

Exercise. Of what sequence is D sin (e}) the }�transform? What is the Fourier Series? How about, 

{̂ (}) =  
1 

> d  A  1> e  ?  1? (6.8)
(1� d}) (1� e}) 

This formalism permits us to define a “convolution inverse”. That is, given a sequence, {p, can  we  

find a sequence, ep> such that the discrete convolution 

X X 
en {p�n = ep�n {n = �p0 (6.9) 

n n 

where �p0 is the Kronecker delta (the discrete analogue of the Dirac �)? To find ep> take the }�transform 

of both sides, noting that Z (�p0) =  1> and we have 

ê (}) {̂ (}) =  1  (6.10) 

or 
1

ê (}) =  (6.11)
{̂ (}) 

But since {̂ (}) is just a polynomial, we can find ê (}) by simple polynomial division. 
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Example. Let {p = 0>p  ?  0> {0 = 1> {1 = 1@2> {2 = 1@4> {p = 1@8> === What is its convolution 

inverse? Z ({p) = 1 + }@2 + }2@4 + }3@8 + ==== So 

1 
{̂ (}) = 1 + }@2 + }2@4 + }3@8 + ==== = 

1� (1@2) } 
(6.12) 

ˆ =so e (}) = 1� (1@2) }> with e0 = 1> e1 1@2> ep = 0> otherwise.�

Exercise. Confirm by direct convolution that the above ep is indeed the convolution inverse of {p = 

This idea leads to the extremely important field of “deconvolution”. Define 

X X4 4
kp = iqjp�q = jqip�q = (6.13) 

q= q=�4 �4 

Define jp = 0>p  ?  0; that is, jp is causal. Then the second equality in (6.13) is 

X4
kp = jqip�q > (6.14) 

q=0 

or writing it out, 

kp = j0ip + j1 ip�1 + j2ip�2 + ==== (6.15) 

If time w = p is regarded as the “present”, then jq operates only upon the present and earlier (the past) 

values of in ; no future values of ip are required. Causal sequences jq appear, e.g., when one passes a 

signal, in through a linear system which does not respond to the input before it occurs, that is the system 

is causal. Indeed, the notation jq has been used to suggest a Green function. So-called real time filters 

are always of this form; they cannot operate on observations which have not yet occurred. 

In general, whether a }�transform requires positive, or negative powers of } (or both) depends only 

upon the location of the singularities of the function relative to the unit circle. If there are singularities 

in |}| ? 1> a Laurent series is required for convergence on |}| = 1;  if all of the singularities occur for 

|}| A 1> a Taylor Series will be convergent and the function will be causal. If both types of singularities 

are present, a Taylor-Laurent Series is required and the sequence cannot be causal. When singularities 

exist on the unit circle itself, as with Fourier transforms with singularities on the real v-axis one must 

decide through a limiting process what the physics are. 

Consider the problem of deconvolving kp in (6.15) from a knowledge of jq and kp> that is one seeks 

in = From the convolution theorem, 

ˆ
= k (}) ˆî (}) =  

k (}) ˆ d (}) = (6.16)
ĵ (}) 

Could one find in given only the past and present values of kp? Evidently, that requires a filter d̂ (}) 

which is also causal. Thus it cannot have any poles inside |}| ? 1= The poles of d̂ (}) are evidently the 

zeros of ĵ (}) and so the latter cannot have any zeros inside |}| ? 1= Because ĵ (}) is itself causal, if it 

is to have a (stable) causal inverse, it cannot have either poles or zeros inside the unit circle. Such a 

sequence jp is called “minimum phase” and has a number of interesting and useful properties (see e.g., 

Claerbout, 1985). 
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As one example, consider that it is possible to show that for any stationary, stochastic process, {q> 

that one can always write it as X4
{q = dq�q�n > d0 = 1  

n=0 

where dq is minimum phase and �q is white noise, with ? �2 A= �2. Let  q be the present time. Then q � 

one time-step in the future, one has 

X4
{q+1 = �q+1 + dq�q�n = 

n=1 

Now at time q> �q+1 is completely unpredictable. Thus the best possible prediction is 

X4
{̃q+1 = 0 +  dq�q�n = (6.17) 

n=1 

with expected error, 

? (˜ 2 
q 

2{q+1 � {q+1) A=? �
2 A= � = � 

It is possible to show that this prediction, given dq> is the best possible one; no other predictor can have 

a smaller error than that given by the minimum phase operator dq = If one wishes a prediction t steps 

into the future, then it follows immediately that 

X4
{̃q+t = dn �q+t n > �

n=t 

t X 
{q+t � {q+t )

2 
A= � 2? (˜ d2 

� n 
n=0 

which sensibly, has a monotonic growth with t= Notice that �n is determinable from {q and its past values 

only, as the minimum phase property of dn guarantees the existence of the convolution inverse filter, en > 

such that, X4
�q = en {q�n > e0 = 1= 

n=0 

Exercise. Consider a }�transform 
1ˆ (6.18)k (}) =  

1� d} 
and find the corresponding sequence kp when d $ 1 from above, and from below. 

It is helpful, sometimes, to have an inverse transform operation which is more formal than saying 

“read o� the corresponding coe!cient of }p)= The inverse operator Z�1 is just the Cauchy Residue 

Theorem I 
1 { (})ˆ

{p = 
}p+1 

g}= (6.19)
2�l |}|=1 

We leave all of the details to the textbooks (see especially, Claerbout, 1985). 
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The discrete analogue of cross-correlation involves two sequences {p> |p in the form 

X4
u� = {q|q+� (6.20) 

q=�4 

which is readily shown to be the convolution of |p with the time-reverse of {q = Thus by the discrete 

time-reversal theorem, 

u (v) = ˆF (u� ) = ˆ { (v)� |̂ (v) = (6.21) 

Equivalently, 

µ ¶
1 

û (}) = {̂ |̂ (}) = (6.22)
} ¡ ¢ 

} = h�2�lvû = �{| (v) is known as the cross-power spectrum of {q> |q = 

If {q = |q> we have discrete autocorrelation, and µ ¶
1 

û (}) = {̂ {̂ (}) = (6.23)
} ¡ ¢ 

} = h�2�lv{ (}) has poles and zeros, ˆNotice that wherever ˆ { (1@}) will have corresponding zeros and poles. û = 

�{{ (v) is known as the power spectrum of {q = Given any û (}) > the so-called spectral factorization problem 

{ (}), ˆconsists of finding two factors ˆ { (1@}) the first of which has all poles and zeros outside |}| = 1> and 

the second having the corresponding zeros and poles inside. The corresponding {p would be minimum 

phase. 

= 0> 1= Then ˆ { (1@}) =  1 + 1@ (2}) >Example. Let {0 = 1> {1 = 1@2> {q = 0> q  6 { (}) =  1 + }@2> ˆ

û (}) = (1 + 1@ (2})) (1 + }@2) = 5@4 + 1@2 (} + 1@}) = Hence �{{ (v) = 5@4 + cos (2�v) = 

Convolution as a Matrix Operation 

Suppose iq> jq are both causal sequences. Then their convolution is 

X4
kp = jqip�q (6.24) 

q=0 

or writing it out, 

k0 = i0j0 (6.25) 

k1 = i0j1 + i1j0 

k2 = i0j2 + i1j1 + i2j0 

=== 

which we can write in vector matrix form as 
6565 ;

AAAA? 

<
AAAA@ 

AAAA> 

k0 j0 0 0 0 = 0 

j1 j0 0 0 = 0 

i099997 

::::8 
= 

99997 

::::8 

k1 

k2 

i1 

i2 

>AAAA= 
j2 j1 j0 0 = 0 

= = = = = = = = 
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or because convolution commutes, alternatively as 

6565 ;
AAAA? 

<
AAAA@ 

AAAA> 

k0 i0 0 0 0 = 0 

i1 i0 0 0 = 0 

j099997 

99997 

::::8 
= 

::::8
k1 

k2 

j1 

j2 

>AAAA= 
i2 i1 i0 0 = 0 

= = = = = = = = 

which can be written compactly as 

h = Gf = Fg 

where the notation should be obvious. Deconvolution then becomes, e.g., 

f = G�1h> 

if the matrix inverse exists. These forms allow one to connect convolution, deconvolution and signal 

processing generally to the matrix/vector tools discussed, e.g., in Wunsch (1996). Notice that causality 

was not actually required to write convolution as a matrix operation; it was merely convenient. 

Starting in Discrete Space 

One need not begin the discussion of Fourier transforms in continuous time, but can begin directly 

with a discrete time series. Note that some processes are by nature discrete (e.g., population of a list 

of cities; stock market prices at closing-time each day) and there need not be an underlying continuous 

process. But whether the process is discrete, or has been discretized, the resulting Fourier transform is 

then periodic in frequency space. If the duration of the record is finite (and it could be physically of 

limited lifetime, not just bounded by the observation duration; for example, the width of the Atlantic 

Ocean is finite and limits the wavenumber resolution of any analysis), then the resulting Fourier transform 

need be computed only at a finite, countable number of points. Because the Fourier sines and cosines 

(or complex exponentials) have the somewhat remarkable property of being exactly orthogonal not only 

when integrated over the record length, but also of being exactly orthogonal when summed over the same 

interval, one can do the entire analysis in discrete form. 

Following the clear discussion in Hamming (1973, p. 510), let us for variety work with the real sines 

and cosines. The development is slightly simpler if the number of data points, Q> is even, and we confine 

the discussion to that (if the number of data points is in practice odd, one can modify what follows, or 

simply add a zero data point, or drop the last data point, to reduce to the even number case). Define 

W = Q�w (notice that the  basic time duration is not  (Q � 1) �w which is the true data duration, but has 
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one extra time step. Then the sines and cosines have the following orthogonality properties: 

cos s�w cos s�w
W W 

s=0 

¶ µ ¶1 µQ �X 2�n 2�p 
= 

;
AA? 

AA= 

0 n 6= p 

Q@2 > n = p 6= 0> Q@2 (6.26) 

Q n = p = 0> Q@2 ¶ µ ¶ (
1 µQ �

= pX 2�n 2�p 0 n 6
sin s�w sin s�w = > (6.27)

W W Q@2 n = p 6= 0> Q@2 s=0


1 µ
 ¶ µ ¶Q �X 2�n 2�p 
cos s�w sin s�w = 0= (6.28)

W W 
s=0 

Zero frequency, and the Nyquist frequency, are evidently special cases. Using these orthogonality prop-

erties the expansion of an arbitrary sequence at data points p�w proves to be: 

¶ µ ¶Q@2 1 µ ¶ Q@2 1 µX Xd0 
�

2�np�w 
�

2�np�w dQ@2 2�Qp�w 
{p = + dn cos + en sin + cos > (6.29)

2 W W 2 2W 
n=1 n=1 

where ¶1 µX2 
Q �

2�ns�w 
dn = {s cos > n  = 0> ===> Q@2 (6.30)

Q W 
s=0 

1 µ ¶X2 
Q �

2�ns�w 
en = {s sin > n  = 1> ===Q@2 1= (6.31)

Q W 
� 

s=0 

The expression (6.29) separates the 0 and Nyquist frequencies and whose sine coe!cients always 

vanish; often for notational simplicity, we will assume that d0> dQ vanish (removal of the mean from a 

time series is almost always the first step in any case, and if there is significant amplitude at the Nyquist 

frequency, one probably has significant aliasing going on.). Notice that as expected, it requires Q@2 + 1  

values of dn and Q@2 1 values of en for a total of Q numbers in the frequency domain, the same total� 

numbers as in the  time-domain.  

Exercise. Write a computer code to implement (6.30,6.31) directly. Show numerically that you can 

recover an arbitrary sequence {s= 

The complex form of the Fourier series, would be 

Q@2 X 
{p = �n h

2�lnp�w@W (6.32) 
n= �Q@2 

1 X1 
Q �
{sh

�2�lns�w@W =�n = (6.33)
Q 
s=0 

This form follows from multiplying (6.32) by exp (�2�lpu�w@W ) > summing over p and noting (
1Q �X 
h(n u)2�lp�w@W ¡ ¡Q> n = u ¢ = (6.34)� = ¢ 

h(2�l(n u)) h(2�l(n u)@Q ) 
p=0 1 � � @ 1 � � = 0> n  6= u 
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The last expression follows from the finite summation formula for geometric series, 

1Q �X 1 uQ 

dum = d 
� 

= (6.35)
1 u 

m=0 
� 

The Parseval Relationship becomes 

1 Q@2 X X1 
Q �

2{2 = |�n | = (6.36)
Q p 
p=0 n= �Q@2 

The number of complex coe!cients �n appears to involve 2 (Q@2) + 1 = Q + 1  complex numbers, or 

2Q + 2  values, while the {p are only Q real numbers. But it follows immediately that if {p are real, 

that � n = �
�
n , so that there is no new information in the negative index values, and �0> �Q@2 = � �Q@2�

are both real so that the number of Fourier series values is identical. Note that the Fourier transform 

values,{̂ (vq) at the special frequencies vq = 2�q@W> are 

{̂ (vq) = Q�q> (6.37) 

so that the Parseval relationship is modified to 

1 Q@2Q �X 1 X 
{2 2 = |{̂ (vq)| = (6.38)p Q 

p=0 n= �Q@2 

To avoid negative indexing issues, many software packages redefine the baseband to lie in the positive 

range 0 � n � Q with the negative frequencies appearing after the positive frequencies (see, e.g., Press 

et al., 1992, p. 497). Supposing that we do this, the complex Fourier transform can be written in 

vector/matrix form. Let }q = h
�2�lvq w, then  

6565 ;
AAAAAAAAA

<
AAAAAAAAA

{̂ (v0) 1 1 1 = 1 {0 = 
9999999997 

9999999997 

:::::::::8 

= 

:::::::::8 

}1 }2 = }Q 
1 1 1{̂ (v1) 

{̂ (v2) 

= 

{̂ (vp) 

1 {1 

{2 

= 

{t 

= 
? @

AAAAAAAAA

}1 }2 = }Q 
2 2 21 = 

= (6.39)AAAAAAAAA

= = = = = = 

1 }1 }2 = }Q 
p p p = >= 

= = = = = = = = 

or, 

x̂ = Bx> (6.40) 

The inverse transform is thus just 

x = B�1 x̂> (6.41) 

and the entire numerical operation can be thought of as a set of simultaneous equations, e.g., (6.41), for 

a set of unknowns x̂= 
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The relationship between the complex and the real forms of the Fourier series is found simply. Let 

�q = fq + lgq> then for real {p> (6.32) is, 

Q@2 

{p = (fq + lgq) (cos (2�qp@W ) + l sin (2�qp@W )) + (fq � lgq) (cos (2�qp@W )� l sin (2�qp@W )) 
q=0 

Q@2 X 
= {2fq cos (2�qp@W )� 2gq sin (2�qp@W )} > (6.42) 
q=0 

so that, 

dq = 2Re (�q) > eq = �2 Im(�q) (6.43) 

and when convenient, we can simply switch from one representation to the other. 

Software that shifts the frequencies around has to be used carefully, as one typically rearranges the 

result to be physically meaningful (e.g., by placing negative frequency values in a list preceding positive 

frequency values with zero frequency in the center). If an inverse transform is to be implemented, 

one must shift back again to whatever convention the software expects. Modern software computes 

Fourier transforms by a so-called fast Fourier transform (FFT) algorithm, and not by the straightforward 

calculation of (6.30, 6.31). Various versions of the FFT exist, but they all take account of the idea that 

many of the operations in these coe!cient calculations are done repeatedly, if the number, Q of data 

points is not prime. I leave the discussion of the FFT to the references (see also, Press et al., 1992), and 

will only say that one should avoid prime Q> and that for very large values of Q> one must be concerned 

about round-o� errors propagating through the calculation. 

Exercise. Consider a time series {p> �W@2 � p � W@2, sampled at intervals �w= It is desired to 

interpolate to intervals �w@t> where t is a positive integer greater than 1. Show (numerically) that an 

extremely fast method for doing so is to find {̂ (v) > |v| � 1@2�w> using an FFT, to extend the baseband 

with zeros to the new interval |v| � t@ (2�w) > and to inverse Fourier transform back into the time domain. 

(This is called “Fourier interpolation” and is very useful.). 

7. Identities and Di�erence Equations 

]�transform analogues exist for all of the theorems of ordinary Fourier transforms. 

Exercise. Demonstrate: 

The shift theorem: Z ({p�t ) =  }t ̂{ (}) =


The di�erentiation theorem: Z ({p � {p�1) =  (1� }) ˆ 
{ (}) = Discuss the influence of a di�erence 

operation like this has on the frequency content of {̂ (v) =


The time-reversal theorem: Z ({�p) =  ̂ 
{ (1@}) = 

These and related relationships render it simple to solve many di�erence equations. Consider the 

di�erence equation 

{p+1 � d{p + e{p�1 = sp (7.1) 
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where sp is a known sequence and d> e are constant. To solve (7=1), take the  }�transform of both sides, 

using the shift theorem: 
1 
}
{ (})� dˆ { (}) = ˆˆ { (}) + e}ˆ s (}) (7.2) 

and solving, 
ŝ (})

{̂s (}) =  = (7.3)
(1@} � d+ e}) 

If sp = 0>p  ?  0 (making sp causal), then the solution (7.3) is both causal and stable only if the zeros 

of (1@} � d+ }) lie outside |}| = 1= 

Exercise. Find the sequence corresponding to (7.3). 

Eq. (7.3) is the particular solution to the di�erence equation. A second order di�erence equation in 

general requires two boundary or initial conditions. Suppose {0> {1 are given. Then in general we need a 

homogeneous solution to add to (7.3) to satisfy the two conditions. To find a homogeneous solution, take 

{k (}) = Df
p where D> f are constants. The requirement that ˆˆ {k (}) be a solution to the homogeneous 

di�erence equation is evidently fp+1 dfp + efp�1 = 0 or, f d+ ef�1 = 0> which has two roots, f± = � � 

Thus the general solution is 

{p = Z
�1 ({̂s (})) +D+f

p +D fp (7.4)+ � � 

where the two constants D± are available to satisfy the two initial conditions. Notice that the roots f± 

determine also the character of (7.3). This is a large subject, left at this point to the references.3 

We should note that Box, Jenkins and Reisel (1994) solve similar equations without using }�transforms. 
They instead define forward and backwards di�erence operators, e.g., B ({p) = {p�1>F ({p) = {p+1 = 

It is readily shown that these operators obey the same algebraic rules as do the }�transform, and hence 

the two approaches are equivalent. 

1
Exercise. Evaluate (1� �B)� {p with |�| ? 1= 

8. Circular Convolution 

There is one potentially puzzling feature of convolution for discrete sequences. Suppose one has 

= 0>= 0> 1> 2> and is zero otherwise, and that jp 6ip 6 = 0>p  = 0> 1> 2> and is zero otherwise. Then 

k = i � j is, 

[k0>k1> k2>k3> k4> k5] = [i0 j0> i0j1 + i1j0> i0j2 + i1j1 + i2 j0> i1j2 + i2j0> i0j2]> (8.1) 

that is, is non-zero for 5 elements. But the product î (}) ĵ (}) is the Fourier transform of only a 3-term 

non-zero sequence. How can the two results be consistent? Note that î (}) > ĵ (}) are Fourier transforms 

of two sequences which are numerically indistinguishable from periodic ones with period 2. Thus their 

product must also be a Fourier transform of a sequence indistinguishable from periodic with period 2. 

3The procedure of finding a particular and a homogeneous solution to the di�erence equation is wholly analogous to 

the treatment of di�erential equations with constant coe!cients. 
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î (}) ĵ (}) is the Fourier transform of the convolution of two periodic sequences ip> jp> not the ones ³ ´ 
Z�1in Eq. (8.1) that we have treated as being zero outside their region of definition. î (}) ĵ (}) is 

4 

the convolutionof two periodic sequences, and which have “wrapped around” on each other–giving rise 

to their description as “circular convolution”. To render circular convolution identical to Eq. (8.1), 

one should pad ip> jp with enough zeros that their lengths are identical to that of kp before forming 

î (}) ĵ (}) = 

In a typical situation however, ip might be a simple filter, perhaps of length 10, and jp might be a 

set of observations, perhaps of length 10,000. If one simply drops the five points on each end for which the 

convolution overlaps the zeros “o�-the-ends”, then the two results are virtually identical. An extended 

3 

discussion of this problem can be found in Press et al. (1992, Section 12.4). 

4 

9. Fourier Series as Least-Squares 

Discrete Fourier series (6.29) are an exact representation of the sampled function if the number of 

basis functions (sines and cosines) are taken to equal the number, Q> of data points. Suppose we use a 

number of terms Q 0 � Q> and seek a least-squares fit. That is, we would like to minimize 
3 �

[Q 0 [Q 0@2] @2]W 1 X� EC{w 
w=0 p=1 p=1 

Taking the partial derivatives of M with respect to the dp and setting to zero (generating the least-squares 

normal equations), and invoking the orthogonality of the complex exponentials, one finds that (1) the 

governing equations are perfectly diagonal and, (2) the dp are given by precisely (6.29, 6.30). Thus we can 

draw an important conclusion: a Fourier series, whether partial or complete, represents a least-squares 

fit of the sines and cosines to a time series. Least-squares is discussed at length in Wunsch (1996). 

Exercise. Find the normal equations corresponding to (9.1) and show that the coe!cient matrix is 

diagonal. 

Non-Uniform Sampling 

This result (9.1) shows us one way to handle a non-uniformly spaced time series. Let { (w) be sampled 

at arbitrary times wm . We  can  write  

[Q 0@2] X 
�ph

2�lpwm @W + %m{ (wm ) =  (9.2) 
p=1 

where %m represents an error to be minimized as 

ECFD FD 
X X 

h2�lpw@W h2�lpw@W M {w (9.1)= �p �p = � � 

4343 �
[Q 0 @2] [Q 0 @2]mQ �1 mQ �1 X X EC ECFD FD 
X X 

%2 
m { (wm )� �qh

2�lqwm @W { (wm )� �ph
2�lpwm @WM = > (9.3)= 

m=0 m=0 p=1 p=1 

or the equivalent real form, and the normal equations found. The resulting coe!cient matrix is no longer 

diagonal, and one must solve the normal equations by Gaussian elimination or other algorithm. If the 
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record length and/or Q 0 is not too large, this is a very e�ective procedure. For long records, the com-

putation can become arduous. Fortunately, there exists a fast solution method for the normal equations, 

generally called the Lomb-Scargle algorithm (discussed, e.g., by Press et al., 1992; an application to 

intermittent satellite sampling of the earth’s surface can be seen in Wunsch (1991)). The complexities of 

the algorithm should not however, mask the underlying idea, which is just least-squares. 

Exercise. Generate a uniformly spaced time series, {w> by specifying the coe!cients of its Fourier 

series. Using the Fourier series, interpolate {w to generate an irregularly spaced set of values of { (wm ) = 

Using { (wm ) and the normal equations derived from (9.3), determine the Fourier components. Discuss their 

relationship to the known ones. Study what happens if the { (wm ) are corrupted by the addition of white 

noise. What happens if the observation times wm are corrupted by a white noise error? (“White noise” is 

defined below. For present purposes, it can be understood as the output of an ordinary pseudo-random 

number generator on your computer.) 

Irregular Sampling Theorems 

There are some interesting theoretical tools available for the discussion of infinite numbers of irreg-

ularly spaced perfect samples of band-limited functions. A good reference is Freeman (1965), who gives 

explicit expressions for reconstruction of band-limited functions from arbitrarily spaced data. Among 

the useful results are that any regularly spaced sample which is missing, can be replaced by an arbitrary 

irregularly spaced sample anywhere in the record. The limiting case of the expressions Freeman shows, 

would suggest that one could take all of the samples and squeeze them into an arbitrarily brief time 

interval. This inference would suggest a strong connection between band-limited functions and analytic 

functions describable by their Taylor Series (regarding closely spaced samples as being equivalent to first, 

second, etc. di�erences). Related results permit one to replace half the samples by samples of the deriva-

tives of the function, etc. The reader is cautioned that these results apply to infinite numbers of perfect 

samples and their use with finite numbers of inaccurate data has to be examined carefully. 

Some useful results about “jittered” sampling can be seen in Moore and Thomson (1991), and Thom-

son and Robinson (1996); an application to an ice core record is Wunsch (2000). 

10. Stochastic Processes


Basic Probability


Probability theory is a large subject that has developed deep philosophical roots and corresponding 

firmly held di�erences of opinion about its interpretation. Some of these disputes are very important, but 

for our purposes we will think of a probability density as a frequency function (histogram) in the limit 

of an infinite number of trials of an experiment as the bin-sizes go to zero. We assume that such a limit 

exists, and can be written for a random variable |> as s| (\ ) > where the subscript is the variable, and the 

argument \ is the values that | can take on (distinguishing the physical variable, e.g. a temperature, 

from its numerical value). Sometimes the subscript is dropped when the meaning is otherwise clear. 
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The use of s| (\ ) in practice means that one is referring to the probability that | lies in the interval 

\ � | � \ + g\ as s| (\ ) g\> that is, lying in some di�erential interval. 

Two very useful probability densities are the uniform one over interval O 

1 O O 
s| (\ ) =  > \ 

O 
� 
2 
� � 

2 

= � (\@O) (10.1) P 
and the normal (or ), 

2 

s| (\ ) =  s
2

1 

��
h�(\ �p)2@(2� )= (10.2) ¡ ¢ 

The latter is also written J p> �2 to denote a normal (Gaussian) density with mean p> and variance 

�2= Both (10.1,10.2) satisfy the necessary requirements, s 0> and� Z 4 

s| (\ ) g\ = 1= (10.3) 
�4 

Define a bracket, ? = A  as the averaging operator with meaning of the integral over all possible values 

of the argument times the probability density. Thus, Z 4 

? |  A= \ s| (\ ) g\ = p (10.4) 
�4 

(the mean, or center of mass), Z 
? |2 A= 

4 

\ 2 s| (\ ) g\ (10.5) 
�4 

the second moment, Z 
2 

4 
2 2? (|� ? |  A) A= (\ � h|i) s| (\ ) g\ = �| (10.6) 

�4 

the variance (second moment about the mean), etc. An important simple result is that if d is constant 

(not random), then 

hd|i = d ?  |  A  =  (10.7) 

Let i (|) be any function of random variable, |= It follows from the frequency function definition of 

the probability density, that Z 4 

? i  (|) A= i (\ ) s| (\ ) g\= (10.8) 
�4 

Eq. (10.7) is evidently a special case. Often it is useful to find the probability density of i from that of |= 

We suppose that the function is invertible so that | (i) is known. Then the line segment g\ is mapped 

into a line-segment gI> by the rule, 
g| (I )

g\ = 
gI 

gI> (10.9) 

we have immediately, 

sj (I ) gI = s| (\ (I ))
g| (I ) 
gI 

gI= (10.10) 

A special case would be i = d| + e> or | = (i � e) @d> g| (I ) @gI = 1@d> and thus 

sj (I ) = s| ((I � e) @d) @d= (10.11) 
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If this result is applied to (10.2), we have 

sj (I ) =  s
2

1 

�d�
h�(I �e�pd)2 @(2d2 � 2 ) (10.12) 

¡ ¢ 
which is J e � pd> d2�2 = Note that by choosing e = p@�> d = 1@�> that the new probability density is 

J (0> 1)–a standard form that is the one usually tabulated. 

If the derivative g|@gI should be zero or infinity, it implies that the mapping from | to i> or from 

i to | is not unique, and some care is needed (the di�erentials are not uniquely mapped). So consider 

J (0> 1) > 

s| (\ ) =  s1
2�
h�\ 2 @2 (10.13) 

and suppose � = |2 . Then clearly the probability that � is less than zero is zero, and both ±| map onto 

the same value of � indicated by, 

g| 1 1 
g� 2| 2

s
� 

(10.14)= = 

becoming infinite at � = 0= We can deduce therefore that, 

( 
1 s

2�
s
[ 
h�[@2> [  � 0 

s� ([) = = (10.15) 
0> [  ?  0 

multiplying by 2 to account for the negative \ contributions, too. Probability density (10.15) is known as 

“chi-square with one degree-of-freedom” usually written "2= “Degrees-of-freedom” will be defined later. 1
 ® 
For future reference, note that if |2 = �2> still with zero mean, then Eq. (10.15) becomes 

( 
21 h�[@(2� 

s� ([) = �
s
2�
s
[ 

)> [  � 0 
(10.16) 

0> [  ?  0 

It can become confusing to keep track of mapping functions j (|) which are  not unique,  and a  

more systematic approach than used to find (10=15) is desirable. Introduce the “probability distribution 

function”, Z \ 

S| (\ ) =  s| (\ 0) g\ 0> (10.17) 
�4 

which has the properties, gS| @g\ � 0> S| (4) = 1> gS| @g\ = s| (\ ) = The interpretation of S| (\ ) is as 

the probability that | is less than or equal to \= 

Then for the above case, with � = |2 and | being Gaussian, 

n o ³ ´ ³ ´ 
S� ([) =  probability that 

s
[ � \ 

s
[ (10.18)= S|� � 

s
[ � S| � 

s
[ 

Z s[ Z �
s
[ 1 

h�\ 2@2= 
1 
h�\ 2 

g\ � @2g\= (10.19)s
2� 

s
2��4 �4 
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And, " s
[ 

# Z Z 
g g 1 \ 2 @2

�
s
[ 1 

h�\ 2@2s� ([) =  S� ([) =  h� g\ � g\ (10.20)s
2� 

s
2�g[ g[ �4 �4

� 
1 
2 [ ̧1 

h� > [  � 0> (10.21)= s
2�
s
[ 

identical to (10=15). “Leibniz’s rule” for di�erentiation of a variable upper bound of integration was used. 

This approach is quite general, as long as expressions such as (10.18) can be constructed. 

If there are two or more random variables, �l> l  = 1> 2=> ===p we can discuss their “joint” or “multi-

variate probability densities”, s�
1 �2 === (�1> �2> ===�p) ;  these are to be thought of as derived from the limits 

of a counting experiment in which �1 > �2 == are measured many times, and then binned by the values 

observed. The limit, as the number of such observations goes to infinity and as the bin size goes to zero, 

is supposed to exist. 

If a joint probability density factors, 

s�
1
�
2 === (�1> �2> ===�p) =  s�

1 
(�1) s�

2 
(�2 ) ===s�p 

(�p) (10.22) 

then the �l are said to be independent. 

Example. The general, p�dimensional joint Gaussian probability density is defined as, 

s�
1
�
2 === (�1> �2> ===�p) =  (10.23) µ ¶

1 
(� m)W 

R�1 (� m)� 
2 
� � = 

1 
1@2 

exp
(2�)

p@2 
|R|

Here � = [�1> ===�p]
W > 

;
AAAAAAA? 

<
AAAAAAA

? (�1 � p1) (�1 � p1) A ? (�1 � p1 ) (�2 � p2) A = = ? (�1 � p1) (�p � pp) A 

? (�2 � p2) (�1 � p1) A ? (�2 � p2 ) (�2 � p2) A = = ? (�2 � p2) (�p � pp) A @
AAAAAAA

R = = = = = =


= = = = =


? (�p � pp) (�1 � p1) A ?  (�p � pp) (�2 � p2) A = = ?  (�p � pp) (�p � pp) A

(10.24) 

AAAAAAA >= 

and |R| is the determinant. R can be written in a variety of ways including 
;
AAAAAAA? 

<
AAAAAAA@ 

�2 
1 �1�2�12 = = �1�p�1p 

�2�1�21 �2 
2 = = �2�p�2p 

= = = = = 

= = = = = 

�p�1�p1 �p�2�p2 = =  �2 
p 

(10.25)R = AAAAAAA
AAAAAAA>= 

¡ ¢ 
2where the �l are the corresponding variances about the mean, and the �lm �m � pm A�? (�l � pl)

@�l�m = are called correlations (discussed below).�ml 
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The important special case of two normal variables (“bivariate normal”) can be written as


s�
1 �2 
(�1>�2) =  (10.26) ( Ã 

1 � 
2 (1� �2) 

!) 

> 
2 2 

2) 2)1 � p1)
2 

� p � p(�1 2� (�1 1) (�2 (�2 � p
2+ 

1@2 
exp �

2) � ��1�22��1�2 (1� � 1 2 

where � is defined as � =? (�1 � p1) (� 2) A @�1�2, and taken up immediately below. Other2 � p

variants of (10.26) are possible. 

Exercise. Show that if all �lm = 0> l 6= m> that (10.23) reduces to the product of p-univariate normal 

distributions, hence showing that uncorrelated normal variates are also independent. 

The joint expectations about the means (moments about the means) are, for two variates, Z Z4 4 

= 1) (�2 � p2) s (�1>�2) g�1g�2 = (10.27)(�1 � p �
1 �2 

�4 �4 
? � 0 A2 

0 �1

0 
l 

0 
2 

0 > �1 are independent, it follows that We will use � to denote the variable with its mean removed. If � 
0 A2 

0 �1
0 A= 02 

0 A? � 1?� =? � = 
0 A2 

0 �1If ?� 6= 0> (suppressing the prime), then they are said to be “correlated” variables. This implies 

that a knowledge of one of them provides some predictive capacity for the other. We can use the idea of 

conditional probability, e.g., the probability that � takes on a particular value (or range of values) �22 

given that � = �1, which  we  write as  1 

s�
2 |�1 

(�2|�1) = (10.28) 

The textbooks all show that if �1> � are independent s�
2 |�1 

(�2|�1) =  s�
2 
(�2)> that is, knowledge of the 2 

value of �1 then contains no predictive information about � = More generally, suppose that we try to 2 

predict �2 from � in the form 1 

= d�1 + % (10.29)�2 

2 2where by definition % is independent of � = Forming ? �2�1 A= d ? �1 A + ? %�1 A= d ? �1 A> or1 

? �2�1 A 
d = > (10.30)2? �1 A 

which would vanish if ? �1�2 A= 0= Define the “correlation coe!cient” 

? �2�1 A 
� = = (10.31)2 2 1@2? �1 A

1@2? �2 A

It is straightforward to show that |�| � 1= (e.g., Priestley, p. 79) We have, 

? �2 A
1@22 

d = � > (10.32)2 1@2? �1 A

and it follows that the fraction of the variance in �2 which is correlated with (predictable by knowledge 

of �1) is just, 
2? �2 A �

2 (10.33) 
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(the “correlated power”), and the part of the variance which is not predictable, is ¡
? �2 

2 A 1 � 2
¢ 

(10.34)� 

which is the “uncorrelated power”. If �1> �2 are independent, they are uncorrelated; if they are uncorre-

lated, they need not be independent. 

Let there be p random variables �1> ===�p, and suppose we define p new variables �1===� which are p 

functions of the original variables. Conservation of area rules lead to the conclusion that if the joint 

probability density of the �l is s�1�2 ===�p 
(�1> �2> ===�p) > then the joint probability density for the �l is 

s�
1 �2 === (�1> �2> ===> �p) =  (10.35) 

C (�1> �2> ===> �p) 
s�

1 �2 ===�p 
(�1 (�1> ===> �p) > �2 (�1> ===> �p) > ===> �p (�1> ===> �p)) C (�1> ===> �p) 

where 
C (�1> �2> ===> �p) 

(10.36)
C (�1> ===>  �p) 

is the Jacobian of the transformation between the two sets of variables. 

In one dimension, the most common and useful transformations are of the form � = d� + e> d> e 

constant. In most cases, we work with canonical probability densities, such that e.g., the mean is zero, 

and the variance unity. The linear transformation, with Jacobian d or d�1 permits one to use these 

standard densities for random variables with arbitrary means and variances (see Eq. 10.12). All the 

ideas concerning correlation, predictability and independence are generalizable to more than two variables, 

through multiple and partial correlation studies, but these are left to the references. 

Example. Let {> | be two uncorrelated (and hence independent) Gaussian random variables of zero 

mean and variance �2= Define u = and ! = tan�1 (|@{). We seek the joint probability density 

for u> !> and their univariate probability densities. The joint probability density function is 

p
{2 + |2 

1 £ ¡
[2 + \ 2

¢ ¤
s{>| ([> \ ) =  exp @2� 2 = 

2�� 
� 

The Jacobian of the transformation from ({> |) to (u> !) is just u (Cartesian to polar coordinates). Then 

the joint probability density of the new variables is 

U £ ¤
exp U2@2� 2su>! (U> �) =  

2�� 
�

Integrating out the � variable over its entire range, �� ! �> (� doesn’t actually appear), we have � � 

immediately, 
U ¡

2
¢ 

su (U) =  exp U2@2� > (10.37) 
� 

�

and by inspection, it must be true that 
1 

s! (�) =  = 
2� 

Thus the phase has a uniform distribution �� ! �> and the amplitude and phase are uncorrelated � � 

with each other. Note that the probability density for u is called the “Rayleigh distribution”. 
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Exercise. Find the mean and variance of a Rayleigh distributed variable. 

For time series work, the most important p�dimensional probability density is the Gaussian or 

normal one (10.23). As the textbooks all show, the normal probability density has several important 

special properties. One of them is that it is completely specified by its mean, m> and covariance matrix, © ¡ ¢ ª 
R = ? (�l � pl) �m � pm A > and that if any pair is uncorrelated, they are also independent. 

Adding Independent Variates. Characteristic Functions 

A common problem is to determine the probability density of a sum of variates, e.g., � = �1 + �2 + ==== 

Obtaining the probability density is best done by undertaking a seeming digression. Consider an arbitrary 

random variable | with known probability density s| (\ ) > and the function j (|) =  hl|w= By (10.8), its 

expected value is Z 
w) =? hl|w A= 

4 

s| (\ ) hl\ w!| ( g\> (10.38) 
�4 

that is, up to the absence of a factor of 2� in the numerator of the exponential, the Fourier transform 

of s| (\ ) = This expected value is clearly a function of w (which should not be interpreted as time–its 

use is merely convention, as is the definition (10.38) without 2� where our own convention would put it), 

which we will denote !| (w) > and which is called the “characteristic function”. Now suppose we have two 

independent random variables |> {. Consider the characteristic function for z = { + |> 

!z (w) =? h
l({+|)w A=? hl{w A? hl|w A= 

Z 4 

hl[w s{ ([) g[ 
Z 4 

hl\ w s| (\ ) g\> (10.39) 
�4 �4 

by independence. So 

!z (w) = !{ (w)!| (w) > (10.40) 

that is to say, the product of two Fourier transforms. Because characteristic functions are defined as 

Fourier transforms, it follows that the inverse transform is, Z 
1 4 

sz (Z ) =  !z (w) h
�lZ w gw (10.41)

2� �4 

with the 1/2� being necessary because of its absence in the complex exponentials. But by the convolution 

theorem (or its very slight re-derivation with this changed convention), we must have Z 
sz (Z ) =  

4 

s{ (Z 0) s| (Z Z 0) gZ 0 = (10.42)�
�4 

The solution generalizes in an obvious way to the sum of an arbitrary number of independent variables. 

If s{ = s| , we have  ! = !| (w)
2 or for the sum of q such variables, !z (w) = !| (w)

q = z 

The characteristic function of the J (0> 1) Gaussian is readily found to be 

2 

! (w) = h�w @2> (10.43) 

2 2 wand thus the sum of two J (0> 1) variables would have a characteristic function, h�w @2 h�w 
2@2 = h� > 

whose inverse transform is found to be 

1 
h�[

2 

s ([) =  s
2�
s
2 

> (10.44) 



39 10. ST O C H A S T IC P RO C ESSE S 

that is to say another Gaussian of zero mean, but variance 2= It follows immediately from (10.43) that a ¡ ¢ 
sum of q - J (0> 1) variables is a new J (0> q) variable. If [ is instead the square of a J 0> �2 variable, 

then Eq. (10.44) becomes 

s ([) =  
1 

h�[
2 @�2 

(10.45)
2

s
2�
s
2�

One use of the characteristic function is in its relations to the moments of the corresponding proba-

bility density. Let us suppose ! (w) has a convergent Taylor series about w = 0 :  ¯ ¯ 
g! (w) ¯ w2 g2! (w) ¯ ¯ +! (w) = 1 + w 
gw ¯ 2! gw2 

¯ + ==== (10.46) ¯ 
w=0 w=0 

But from (10.38) we can evaluate the successive derivatives: ¯ 
g! (w) 
gw 

¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
l\ s| (\ ) g\ = lp> 

g2! (w) 
gw2 

¯ ¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
(l\ )2 s| (\ ) g\ = l2 p2> 

g3! (w) 
gw3 

¯ ¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
(l\ )3 s| (\ ) g\ = l3 p3> (10.47) 

g(q)! (w) 
gw(q) 

¯ ¯ ¯ ¯ 
w=0 

= 
Z 4 

�4 
(l\ )q s| (\ ) g\ = lqpq> 

Where pl are the successive moments of the probability density. Thus the successive moments determine 

the terms of the Taylor series expansion in (10.46), and hence the probability density itself. These results 

can be turned into a statement that a knowledge of all of the moments pl of a random process is usually 

equivalent to knowledge of the complete probability density. Conversely, knowledge of the characteristic 

function means that all of the moments are readily generated from its derivatives evaluated at w = 0= 

(There are probability densities whose moments are not finite, e.g., the Cauchy, and the argument fails 

for them.) 

The characteristic function generalizes to multivariate probability densities by introduction of Fourier 

transforms in several dimensions. Moment generation is achieved by using Taylor series in several dimen-

sions. 

Central Limit Theorems (CLT) 

Consider the sum of q independent variables, �l, 

� = �1 + ==== + �q (10.48) 

2all having the same mean, p1 and variance, �1, and with the same, but arbitrary, probability density, 

s1 (�) = Then 
2? �  A= p = qp1> ?  (� � p)2 

A= � 2 = q� = (10.49)1 

Define the normalized variable 

�̃ = 
� � p 

= �1 + === + ˜q> ˜˜ � �l = 
�l � p1 

� 
s
q�1 

= (10.50) 
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Suppose that the characteristic function of �l is !1 (w) = Then by the shift and scaling theorems of Fourier 

�l is ˜transforms, the characteristic function of ˜ !1 (w) =  !1 (w@ (�1
s
q)) exp (�lp1w@ (�1q)) = Hence the 

characteristic function for �̃ must be h i¡ ¡ ¢¢ q 
h�lp1 w@(�1

s
q)!1! (w) = ˜˜ !1 (w)

q 
= w@ �1

s
q = (10.51) 

Now !̃1 (w) is evidently the characteristic function of a random variable with zero mean and variance 1@q= 

Thus it must be true that (expanding in a Taylor Series), and using (10.46, 10.47), µ ¶
2 3 ¡ ¡ w

h�lp1w@(�1
s
q)!1 w@ �1

s
q 
¢¢ 
= 1  

w
+ R = (10.52)�

2q �1q3@2 

Thus to lowest order, (10=51) is µ ¶q2 
˜ w
! (w) =  1 = (10.53)�

2q 

Taking the limit as q goes to infinity, and invoking L’Hôpital’s rule on the log of ˜

˜

! (w) > we have 
2 

! (w) $ h�w @2 (10.54) 

Thus in this limit, the probability density for �̃ is the inverse tranform of (10.54) and is 

2

s̃ (�) =  s1
2�
h�� @2 (10.55) 

that is, J (0> 1) = Or, using the scaling and shift theorems, 

1 
h�(��qp1)

2 @(2
s
q�1)=s (�) =  s

q�1
s
2� 

(10.56) 

That is to say, we have shown that sums of large numbers of random variates have a tendency to become 

Gaussian, whether or not the underlying probability densities are themselves Gaussian. Result (10.56) 

is a special case of the so-called Central Limit Theorem (CLT), which can be proved under much more 

general circumstances. There are clearly restrictions that could prevent the limit (10.54) from being 

reached, but the CLT is often valid. Note the special case of a sample average, 

X1 q 

p̃ = �l> (10.57) 
q 
l=1 ¡ ¢ 

for which it follows immediately that p̃ will have a probability density J p> �2@q = 

Exercise. Suppose that s1 (�) = 1@2 {� (� � 1) + � (� + 1)} = Study the behavior of (10=51) as 

= What is the limiting probability density of the sum? Hint: use the binomial expansion onq $ 4 ¢¡
hlw + h�lw 

q
(1@2q) . 

Stationarity ¡ ¢ 
Consider a J 0> �2 time series {p such that Uqp =? {q{p A =  Given the zero mean, and specified 

R> we infer that the joint probability density s{1 {2 ==={n is (10.23) with m = 0= Let us suppose that Uqp 

depends only upon the time di�erence � = q � p> so that Uqp =? {q{q+� A= U� > independent of 

q= Such a time series is said to be “stationary in the wide sense”. If it is also true that all statistics, 

including all higher moments such as ? {q{p{s A, etc. only depend upon the time interval among the 
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time series elements, the time series is said to be “stationary” or “stationary in the strict sense”. It is 

another nice property of normal variates that if they are stationary in the wide-sense, they are stationary 

in the strict sense (most readily seen by observing that in (10.23) R has all of its parameters dependent 

solely upon � >  and not upon the absolute time. Hence, the probability density depends only upon � >  as 

does any statistical property derived from it. The theory for stationary time series is highly developed, 

and it is commonly assumed that one is dealing in nature with stationary processes, but one must be 

alert to the potential failure of the assumption. 

Sample Estimates 

In working with random variables, it is very important to distinguish between a theoretical value, 

e.g., the true average, written ? |  A>  or p> and the sample value, such as the sample average, written 

˜as either ? |  AQ or p> where the Q subscript indicates that it was based upon Q observations. We use 

a tilde, ~, to mark an estimate of a variable; estimates are themselves always random variables (e.g. p)˜

where the parameter itself, p is not. 

The usual sample average is 
Q X1 

p̃ =? |  AQ = |l = (10.58)
Q 
l=1 

A useful property of a sample mean (or estimator of the mean) is that it’s own expected value should be 

equal to the true value (this is not always true, and as will be seen, it is not always completely desirable.) 

For example, 
Q Q X 1 X1 

? p̃ A= ? |l A= p = p (10.59)
Q Q
l=1 l=1 

Such an estimator is said to be unbiased. (If we could average Q experimental values in P separate 

experiments, the average of the sample averages would be expected to be the true average.) 

It helps to know what is the scatter of an estimate about its true value, so consider the variance: " #2 " #2Q Q X 1 X12? ( ˜ A=? |l � p A=? (|l � p) A (10.60)p � p)
Q Q
l=1 l=1 

Q 21 X 
2 Q�2 �

= 
Q2 

? (|l � p) A= = (10.61)
Q2 Q

l=1 

so that the standard deviation of a sample mean about the true mean is �@
s
Q>  which is the famous 

“square-root of Q” rule.  

Now consider the sample variance: 

Q X1 
˜2 � = (|l p)

2 (10.62)˜
Q 

� 
l=1 

computed as the sample variance about the sample mean. A little algebra (left as an exercise), shows 

that, 

� 2 A= 
Q � 

� =6 � (10.63)? ˜
1 2 2 

Q 
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that is to say, the sample variance is biassed (although it is asymptotically unbiased as Q $ 4)= The 
bias is readily removed by re-defining 

Q X1 
˜2 � = ˜(|l p)

2 = (10.64)
1 

�
Q �

l=1 

The origin of the bias in this case is that in (10.62) the Q terms being averaged are not independent of 

each other; rather since the sum is taken over the values of |l p> the last term could be predicted from ˜�
the preceding Q � 1 of them by the requirement that the sample average actually is p= Consequently ˜

there are only Q � 1 independent terms (Q � 1 “degrees-of-freedom”) in the sum. 

Consistent Estimators 

Data are used to estimate various properties characterizing the statistical population from which the 

observation come. For example, the sample mean (10.58), is intended to be a good estimate of the true 

average p> from which the data were drawn. Many other properties are estimated, including the variance 

and the power density spectrum (defined below). Any estimate of a property has to be examined for at 

least two desirable properties: (1) that the average value of the estimate should be the true value (for 

an unbiased estimate), at least as the number of samples becomes large, and (2) that as the number of 

samples becomes large, the variance of the sample about its mean value (which one might hope is the true 

value) ought to go to zero. Estimators with these two properties are said to be “consistent”. Sometimes 

however, demanding an unbiased estimator greatly increases the variance of the estimate, and one may 

deliberately permit a bias if the variance can thereby be reduced. The sample mean was shown above to 

be unbiased, and by (10.60) its variance about the true value diminishes with Q ; hence it is a consistent 

estimator. One can also show that ˜2 in the form (10.64) is also a consistent estimator as is the original � 

definition, in the asymptotic limit. 

A useful idea in this context is the Chebyschev inequality. Let � be any random variable with true 

mean p, variance  �2 and second moment ? �2 A= p2 (that is not taken about the mean). Then Ã ! Z Z � Z � 4
2 p2 = 

4 

� s (�) g� + � 2 s (�) g� (10.65)� 
��4 �4 Ã ! Z � Z 

2 
� 4 

� + s (�) g� (10.66)�
��4 

2since � 2 is always greater than or equal to � in the integral. So we have the weak inequality Z 
p2 

s (�) g� 2 > (10.67) 
|�|A� 

� 
� 

which we can read as “the probability that |�| A �  is less than or equal to p2@�
2 =” If we replace � by 

� �p> and then p2 = �2> we have 
2�

prob {|� �p| � �} � (10.68)2 � 
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where “prob” denotes “the probability that”. The sense of the inequality can be inverted to 

2�
prob {|� �p| � �} � 1 > (10.69)2� 

� 

which is the Chebyschev inequality. These inequalities in turn lead to the important idea of “conver-

gence in probability”. � (where n is a parameter) is said to converge in probability to f> as n $ 4> ifn 

prob{|�n � f| � �} $ 0= This is convergence that is “almost surely”, written a.s., and di�ers from ordi-

nary mathematical convergence in being a statement that deviation from the asymptotic value becomes 

extremely improbable, but not impossible, in the limit. 

Let us apply the Chebyschev inequality to the sample mean (10.58), whose variance is �2@Q= Then 

by (10.69), 
2�

prob {| ̃
Q�2 (10.70)p �p| � �} � 

Thus as Q $4 (corresponding to the parameter n above), the probability that the sample mean di�ers 

from the true mean by any amount � can be made arbitrarily small. It is thus a consistent estimator. 

For the spectral estimators, etc. used below, one needs formally to show convergence in probability to 

the true values, but this demonstration is normally left to the reader. 

Confidence Intervals 

Consider the sample mean p̃> whose own mean is p and whose variance is �2@Q= If it is derived from ¡ ¢ 
{l which are normal independent, identically distributed (i.i.d) variates, then p̃ is J p> �2@Q = Let us 

make a table of the canonical J (0> 1) variable: 

� (�@2) prob[�� � [ � �] � 

1.0 0.683 0.317 

1.96 0.950 0.050 

2.00 0.954 0.046 

2.58 0.990 0.010 

3.00 0.997 0.003 
Table Caption. (Taken from Jenkins and Watts, 1968, p. 71). Here � is  the value, symmetric about  the  

mean of 0, between which the probability is 1 � that a random sample [ would lie. � is the fraction �
of the value which would lie outside the range ±�. Thus  a  random  sample  [ would have a probability 

of 0=95 = 1 � of lying in the range ±1=96= In many trials, one would expect 5% of the values to lie, by �
chance, outside this range. The normal density is symmetric about the mean, and which is not true for 

more general densities. 

Then ½ ¾ 
˜

prob �� (�@2) � 
p �p 

�@
s
Q 
� � (�@2) = 1  � (10.71)�
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Figure 9. Probability density for "2 
� , � = 1> ===> 4= Note growth of long positive tail as � 

increases. p = �> and �2 = 2�= For large �, "2 
� approaches a normal probability density. 

The cases � = 1> 2 are exceptional in having their maximum at 0. 

can be read from  the  table for  any given  �= We can re-arrange (10.71) to: ½ ¾ 
� (�@2) � � (�@2) � 

prob p � s
Q 

˜ s
Q 

= 1  � (10.72)� p � p + �

Alternatively, n ³ ´ ³ ´ o 
p � �@

s
Q � (�@2) � p � p + �@

s
Q � (�@2) = 1  �= (10.73)prob ˜ ˜ �

˜This  last  form  is  the most useful one:  suppose to be specific  that  � = =05= Then for a sample mean p 

obtained from a random variate having variance �2> the probability is 0.95 that the true value, p> lies in 

the interval p̃ ± �� (=05@2) = This interval is said to be a 1 �% confidence interval (here a 95% confidence �
interval). It clearly diminishes to zero as Q $4= 

Consider now a non-symmetric probability density. One that proves very useful to us is the so-called 

"2 (chi-square with � degrees-of-freedom),� 

1 
s� ([ ) =  [�@2�1 exp (�[@2) > [  A  0 (10.74)

2�@2� (�@2) 

= 0> [  � 0 P� 2whose mean is �> and variance is 2�= (This probability density describes a variable { = �l > where the 1 

�l are independent, J (0> 1) =) It is plotted  in  fig.  9  for  1 � 4= For present purposes, we note only � � 

that the probability density is non-symmetric about its mean, having a long tail toward high positive 

values. Consider the tail at the low end containing a fraction d@2 of the values from a set of random 
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trials, and denote the value [ below which this tail falls as � (�@2) = Correspondingly, the tail at the � 

high end occupying �@2 of the trial results is to lie to the right of [ = �+ (�@2) = Suppose now that we 

have a variable � which has been estimated as �̃ and which is thought to be distributed in "2 
� with mean 

� and variance 2�= Then 

n o 
˜prob � (�@2) � � �+ (�@2) = 1  �= (10.75)� � � 

To employ this in a practical example, consider the sample variance ˜2 (10.64) constructed from Q� ¡ ¢ 
idenditically distributed variables, which are J p> �2 . It is easy to show (sketched out below) that 

� �(Q � 1)˜2@�2 will be a "2 variable with � = Q � 1 (it’s expected value is Q � 1> and its variance is 
22(Q � 1))= Then setting �̃ = (Q � 1)�̃ @�2 in (10.75) and rearranging, we obtain 

½ ¾ 

prob 
˜2 (Q � 1) 2 � (Q � 1)� ˜2 

� = 1  � (10.76) 
�+ (�@2) 

� � 
� (�@2) 

� 
� 

and the true variance would like between these two (unequal) bounds about ˜2 = Because � ? �+, the  � � 

upper limit of the �% confidence limit will be further above �2 than the lower limit will be below (for 

� A  2). �± are tabulated in various statistics books or can be calculated from various software packages. 

(It is sometimes useful to have the "2 
� distribution for the sum, �> of squared zero-mean Gaussian variates 

of variance �2> or: 

�@2 1¶ � ¡ ¡
s� ([) =  

1 
µ 
[ 
2 

exp �[@ 2� 2
¢¢ 
> [  � 0 (10.77) 

�22�@2� (�@2) �

= 0> [  ?  0=) 

In examining the form (10.73), one might object that �2 is not likely to be known. This led Gosset 

(writing under the famous pseudonym of “Student”) to show that he could find the probability density 

of the variable WQ�1 = 
s
Q ( ˜ � and which is not dependent upon �= The resulting probability p � p) @˜

density is called Student’s w distribution. We leave its discussion to the references (see, e.g., Cramér, �
1946, Section 18.2). 

White Noise 

A white noise process is a stationary time series (sequence) with a uniform in time variance, zero 

mean, and in which knowledge of the value at one time �p carries no information about its value at any 

other time, including the immediately preceding and following times. That is, ? �p�p0 A= �2 �pp0 = A � 

sequence of coin flips is such a process. The general terminology is that these are independent identically 

distributed variables (or an i.i.d). Often, we will assume that the values are normally distributed, as in 

(10.2) with p = 0= 



46  1.  F  R  E  Q  UENCY  DO  M  A  IN  FO  RM  ULATIO  N  

White noise is the simplest possible stochastic process. Let us therefore consider its Fourier transform 

or series using the real form (6.29-6.31). The coe!cients are 

¶1 µX2 
Q �

2�ns�w 
dn = �s cos > n  = 0> ===> Q@2> (10.78)

Q W 
s=0 

1 µ ¶X2 
Q �

2�ns�w 
en = �s sin > n  = 1> ===> Q@2 1= (10.79)

Q W 
� 

s=0 

It follows immediately that 

? dn A=? en A= 0  ¶1 µ ¶ 1 µXX 2�ns�w 
Q �

2�ns�w 
? d2 A=

4 
Q �

n Q2 
? �s cos �u cos A 

W W 
s=0 u=0 µ ¶ µ ¶

4 XX  2�ns�w 2�ns�w 
= ? �s�u A cos cos 
Q2 W W 

= 
4 
Q2 

XX
�su � 2 

� cos 

µ
2�ns�w 
W 

¶
cos 

µ
2�ns�w 
W 

¶ 

= 
2 
Q 
� 2 
� (10.80) 

by (6.30). Similarly, 

? e2 
n A= 

2 
Q 
� 2 
� (10.81) 

? dqen A= 0  (10.82) 

? dn dq A=? en eq A= 
2 
Q 
�nq� 2 

� > (10.83) 

omitting the zero and Nyquist frequencies. For these frequencies, 

? d2 
0 A=? d

2 
Q@2 A= 

4 
Q 
= (10.84) 

To say this in words: the Fourier transform of a white noise process has zero mean and is uncorrelated 

from one frequency to another; the sine and cosine amplitudes are uncorrelated with each other at all 

frequencies, and the variance of the sine and cosine components is uniform with frequency. If the �p 

are normally distributed, J 0> �2 then it follows immediately that dn > en are also normally distributed � ¡ ¢ 
¡ ¢ 

J 0> 2�2@Q = The Parseval relationship requires � 

1 
d2 1 

Q@2 1 X X� ¡ d21 
Q �

2 d2 2 
¢ Q@20 � = + + e + > (10.85)p qQ p 4 2 4 

p=0 p=1 

here including the mean and Nyquist frequencies. (The true mean is zero, but the actual sample mean 

will not be, although it is often set to zero for numerical reasons. Doing so, means that only Q � 1 of 
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the terms on the left in (10.85) would then be independent.) To check this last equation, we can see if it 

holds on the average: 

0 A 1 
� ¡ ? d

2@21
? ? d2 Q@2 1 X X A 

+ 
1 
Q �

? �2 A= ? d2 + e 2 
¢ 
A + Q@2 

> or,q qQ p 4 2 4 
p=0 q=1 

Q@2 1 µ ¶ µ ¶
2 X 2 2 2 

2 ? �� 1 
�

2 2 2 �� �� 1 Q 
1

4 
� 2 + 

�� 2 � = + + � + = + = � > (10.86)� Q �Q 2 Q Q � Q Q 2 2 
� 

Q � 
q=1 

as required. 

As the record length grows, the number Q> of Fourier coe!cients grows linearly, but the mean square 
2 2power (1@Q) 

PQ �1 �p in (10.85) remains fixed, independent of Q= Thus the expected value of any d2 +ep=0 q q 

is reduced by the factor 1@Q to compensate for their growing population. 

If one computes the phase of the Fourier series as 

! = tan�1 (eq@dq) (10.87)q 

it is readily seen that !q has a uniform probability density 

1 
s! (�) =  = (10.88)

2� 

(To see this algebraically, we recognize that if �p are J 0> �2 > dq> eq are uncorrelated Gaussian variables � ¡ ¢ 
¡ ¢ 

distributed J 0> �2@2Q and hence they are also independent. Because they are independent, their joint � 

probability density is the product of their identical probability densities: 

sdq >eq (�1>�2) =  sdq (�1) seq (�2) =  (10.89) 

1 ¡ ¡ ¡ ¡
2 2 exp �1@ � 2@2Q 

¢¢ 
exp �2@ � 2@2Q 

¢¢ 
2 � �2� (�� @2Q) 

� �

We can thus conclude that there is no information content in the phase of a white noise process. What 
2then is the probability density for d2 > e2 and d2 + eq? The probability densities for the first two must be q q q 

identical, and are thus the densities for the square of a normal variate with 0 mean and variance �2@2Q= ³ ´ � 
= dq@ �� @

s
2QLet us use normalized variables so that they have unit variance, i.e., consider d0 q > e0 q = ³ ´ 

�� @
s
2Qeq@ each of which will be J(0> 1)= Using the rule for change of variable we find that, 

[�1@2 

([) =  s ([) =  exp (�[@2) (10.90)2 
q 

2 
q 
sd0 e0

2which is again "1 (recall Eq. (10.15)). Invoking the machinery for sums of independent variables, we find 
02 02that the probability density for uq = d 

0 2 + e isq q 

s
2� 

2 
q 
su0

1 
([) =  exp (�[@2) (10.91)

2 
2which is called "2 (chi-square with two-degrees-of-freedom) and whose mean is 2 and variance is 4 (one 

has to do the integral; see Eq. 10.74). 
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Figure 10. (a) 2048 numbers from a pseudo-random generator. These approximate 

a white noise process. (b) Linear scale periodogram of the values in (a). (c) Semi-
2

logarithmic scale plot of v |�q| in which the multiplication by v compensates for the 

logarithmic squeezing of the frequencies at the high end. Notice the visual impression 

that energy increases with increasing frequency–an artifact of the plotting method. (d) 
2 2

2 variate. The 30 bin histogram of the values |�q| which should and do approximate a "

mean (dashed) and median (solid) values are shown. There is evidently a much greater 

chance of a value far larger than the mean to occur than there is for a much smaller one 

to occur, owing to the limiting value at zero. But more smaller values below the mean 
2
2 =occur than above the mean of "

Exercise. Using the results of the exercise on P. 37, find the probability density for the amplitude 

and phase of the Fourier coe!cients. 
2 
q 

2
2 

q, their  sum  of  squares,  u

along with the theoretical " (scaling the variables by �� @2Q to 

2 
q 

2 
qFig. 10 shows the Fourier coe!cients of a pseudo-random � d + e= , 

2 
qand the histogram of occurrences of u

restore the original variance). The true mean would be 

2 2� �2 � �? u A= 2  (10.92)= q 2Q Q 

2 
qand the variance of u would be 

¶2 22 �2 
�

¶¢2 
A A= 2

µ 

=

µ
�¡

? 2 2 �? u (10.93)u = q� q Q Q

That is, the variance is proportional to the square of the of the power density. 

2 
q = d

2 
q + e

2 
q = |�q|Definition. u is called the “periodogram” of a random process. 2 
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Remark 1. There is a common, naive, assertion about the results of Fourier transforming a stochastic 

process. Basically, it says that “obviously, the low frequency Fourier components are less-well determined 

than are the high frequency ones, because many more oscillations of the high frequency components exist 

in the record, whereas for the first record harmonic, v1 = 1@W , only one cycle is covered by the data.” 

Unfortunately this seemingly obvious conclusion is false. Consider that every Fourier harmonic, vq, 

di�ers from its two neighboring harmonics, vq�1>vq+1 by exactly one cycle per record length. All of the 

data are required to determine the Fourier amplitudes of these neighbors, separating them by consideration 

of their di�erence by one cycle in the record. v1 di�ers exactly in the same way from v0 (the record mean), 

and v2. Thus precisely the same amount of information is available about v1 as about any other vq = This 

statement is consistent with (10.93): the variance of the periodogram values is independent of q= 

It appears from (10.93) that the variance of the estimates diminishes with Q= But the ratio of the 

variance to the estimate itself, is independent of Q= That is, because the number of Fourier coe!cients in-

creases with Q> each has a diminishing proportional contribution to the constant record variance (power), 

and the variability of the estimate as a fraction of the true expected value remains unchanged even as 

the record length goes to infinity. This behavior confused scientists for years. 

11. Spectral Estimation 

We have seen that the Fourier coe!cients (periodogram) of a normal white noise process are uncorre-

lated (and thus independent) random variables, whose phase has no information except that its underlying 

probability density is uniform. The squares of the absolute values are distributed in "2 such that the 2 

mean values ? d2 + e2 A= �2@Q (if one prefers to use the complex Fourier series, ? |�q|
2 
A= �2@2Q>q q � �

2 2
with the understanding that ? |�q| A=? |� �q| A, that is, half the variance is at negative frequencies, 

but one could decide to double the power for positive q and ignore the negative values). Its variance 

about the mean is given by (10.93). 

Suppose we wished to test the hypothesis that a particular time series is in fact white noise. Figure 

10b is so noisy, that one should hesitate in concluding that the Fourier coe!cients have no structure 

inconsistent with white noise. To develop a quantitative test of the hypothesis, we can attempt to use ¯ ¯ 
the result that ? ¯�2 ̄  A should be a constant independent of q= A useful, straightforward, approach is to q 

exploit the independence of the neighboring Fourier coe!cients. Let us define a power spectral estimate 

as 
q+[�@4] X1 2��̃ (vq) =  |�q| (11.1)

[�@2] + 1 
s=q�[�@4] 

where for  the moment,  � is taken to be an odd number and [�@4] means “largest integer in �@4”= That 

is the power spectral estimate is a local average over [�@2] of the squared Fourier Series coe!cients 

surrounding frequency vq = Fig. 11a shows the result for a white noise process, where the average was 

over 2 local values surrounding vq (4 degrees of freedom). Fig. 11b shows an average over 6 neighboring 
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Figure 11. (a) Power density spectral estimate of a white noise process averaged over 

2 frequency bands (4 degrees-of-freedom), and (b) over 6 frequency bands (12 degrees of 

freedom). An approximate 95% confidence interval is shown as obtained from (10=76)= 

(c) Lower curve is the white noise process whose spectra are shown in (a), (b), and the 

upper curve is the same white noise (�2 = 1)  plus a unit amplitude sine wave, displaced � 

upwards by 5 units. Visually, the presence of the sine wave is di!cult to detect. (d) 

Power density of upper curve in (c), making the spectral peak quite conspicuous, and 

much larger, relative to the background continuum than the 95% confidence limit. 

frequency estimates (12 degrees-of-freedom). The local averages are obviously a good deal smoother than 

the periodogram is, as one expects from the averaging process. The probability density for the local 

average �� (vq) is evidently that for the sum of [�@2] variables, each of which is a "2 variable. That 2 

is, �̃ "2� (vq) is a random variable with � degrees-of-freedom (2 degrees-of-freedom come from each � 

periodogram value, the sine and cosine part, or equivalent real and imaginary part, being uncorrelated 
˜variables). The mean ? �� (vq) A= �2@Q and the variance is � 

³ ´2 4�
? �̃ � � �(vq) � (vq) A= > (11.2)� 

2Q 2 � 

which goes to zero as � $ 4 for fixed Q . Visually, it is much more apparent from Fig. 11 that the 

underlying Fourier coe!cients have a constant value, albeit, some degree of variability cannot be ruled 

out as long as � is finite. 

This construct is the basic idea behind spectral estimation. The periodogram is numerically and 

visually extremely noisy. To the extent that we can obtain an estimate of its mean value by local 

frequency band averaging, we obtain a better-behaved statistical quantity. From the probability density 
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of the average, we can construct expected variances and confidence limits that can help us determine if 

the variances of the Fourier coe!cients are actually independent of frequency. 

The estimate (11.1) has one obvious drawback: the expected value depends upon Q> the number of 

data points. It is often more convenient to obtain a quantity which would be independent of Q> so that 

for example, if we obtain more data, the estimated value would not change; or if we were comparing the 

energy levels of two di�erent records of di�erent length, it would be tidier to have a value independent 
˜of Q= Such an estimate is easily obtained by dividing �� (vq) by 1@Q (multiplying by Q)> to give 

q+[�@4]
1 X 

2
�̃ � (vq) =  |�s| = (11.3)

([�@2] + 1)@Q 
s=q�[�@4] 

This quantity is the called the estimated “power spectral density”, and it has a simple interpretation. 

The distance in frequency space between the individual periodogram values is just 1@Q (or 1@Q�w if one 

puts in the sampling interval explicitly). When averaging, we sum the values over a frequency interval 

([�@2]@Q�w). Because 
Pq+[�@4] 2 
s=q�[�@4] |�q|

˜is the fractional power in the range of averaging, �� (vq) > is just 

the power/unit frequency width, and hence the power density. (If one works with the Fourier transform 

the normalization factors change in the obvious way.) For a stochastic process, the power density is 

independent of the data length. 

Exercise. Show analytically that the power density for a pure sinusoid is not independent of the data 

length. 

A very large number of variations can be played upon this theme of stabilizing the periodogram by 

averaging. We content ourselves by mainly listing some of them, leaving the textbooks to provide details. 

The average over the frequency band need not be uniform. One may prefer to give more weight to 

frequencies towards the center of the frequency band. Let Zq be any set of averaging weights, then (11.3) 

can be written very generally as Pq+[�@4] 2Zs |�s|1 s=q�[�@4]
�̃ � (vq) =  > (11.4)Pq+[�@4]([�@2] + 1) @Q 

s=q�[�@4] Zs 

and the bands are normally permitted to overlap. When the weights are uniform, and no overlap is 

permitted, they are called the “Daniell” window. When the averaging is in non-overlapping bands the 

values of �̃� (vq) in neighboring bands are uncorrelated with each other, asymptotically, .as Q $ 4
With overlapping bands, one must estimate the expected level of correlation. The main issue is the 

determination then of �–the number of degrees-of-freedom. There are no restrictions on � being even 

or odd. Dozens of di�erent weighting schemes have been proposed, but rationale for the di�erent choices 

is best understood when we look at the Blackman-Tukey method, a method now mainly of historical 

interest. 

An alternative, but completely equivalent estimation method is to exploit explicitly the wide-sense 

stationarity of the time series. Divide the record up into [�@2] non-overlapping pieces of length P (Fig. 
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Figure 12. North component of a current meter record divided into 6 non-overlapping 

segments. One computes the periodogram of each segment and averages them, producing 

approximately 2 degrees of freedom from each segment (an approximation dependent 

upon the spectrum not being too far from white). 

¯ ¯2 
12) and form the periodogram of each piece ¯̄ �(qs)¯̄ (The frequency separation in each periodogram is 

clearly smaller by a factor [�@2] than the one computed for the entire record.) One then forms 

[�@2] ¯ X ¯21 ¯��̃ (vq) =  ¯ �(s)¯̄ (11.5)
([�@2] + 1) @P q 

s=1 

For white noise, it is possible to prove that the estimates in (11.3, 11.5) are identical. One can elaborate 

these ideas, and for example, allow the sections to be overlapping, and also to do frequency band averaging 

of the periodograms from each piece prior to averaging those from the pieces. The advantages and 

disadvantages of the di�erent methods lie in the trade-o�s between estimator variance and bias, but the 

intent should be reasonably clear. The “method of faded overlapping segments” has become a common 

standard practice, in which one permits the segments to overlap, but multiplies them by a “taper”, Zq 

prior to computing the periodogram. (See Percival and Walden). 
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12. The Blackman-Tukey Method 

Prior to the advent of the FFT and fast computers, power density spectral estimation was almost 

never done as described in the last section. Rather the onerous computational load led scientists, as far 

as possible, to reduce the number of calculations required. The so-called Blackman-Tukey method, which 

became the de facto standard, begins with a purely theoretical idea. Let ? {q A= 0= Define the “sample 

autocovariance”, 
1�|� | X1 

Q�

Ũ (� ) =  {q{q+� > �  = 0> ±1> ±2> ===> ±Q � 1> (12.1)
Q 

q=0 

where as � grows, the number of terms in the sum necessarily diminishes. From the discrete convolution 

theorem, it follows that, 

³ ´ Q�1 X 1 2 2˜ ˜F U (� ) = U (� ) exp (�2�lv� ) =  |{̂ (v)| = Q |�q| (12.2)
Q 

�= �(Q�1) 

Then the desired power density is, 

1Q�X 
2

? Q  |�q| A= � (v) =  ? Ũ (� ) A exp (�2�lv� ) = (12.3) 
�= �(Q�1) 

Consider 
1�|� |Q�X 

? ˜
1 

U (� ) A= ? {p{p+� A> � = 0> ±1> ±2> ===> ±Q � 1 
Q 

p=0 

Q � |� | 
= U (� ) > (12.4)

Q 

by definition of U (� ) = First letting Q $4> and then � $4> we have the Wiener-Khinchin theorem: 

X X4 4
� (v) =  U (� ) exp (�2�lv� ) =  U (� ) cos (2�v� ) (12.5) 

�= �=�4 �4 

the power density spectrum of a stochastic process is the Fourier transform of the autocovariance. This 

relationship is an extremely important theoretical one. (One of the main mathematical issues of time 

series analysis is that the limit as W = Q �w $4 of the Fourier transform or series, µ ¶
1 
Z W@2 2�lqw 

�q = { (w) exp gw> (12.6)
WW �W@2 

whether an integral or sum does not exist (does not converge) because of the stochastic behavior of { (w), 

but the Fourier transform of the autocovariance (which is not random) does exist.).  It is important  

to recognize that unlike the definition of “power spectrum” used above for non-random (deterministic) 

functions, an expected value operation is an essential ingredient when discussing stochastic processes. 
˜It is very tempting (and many people succumbed) to assert that U (� ) $ U (� ) as Q becomes very 

large. The idea is plausible because (12=1) looks just like an average. The problem is that no matter 

how large Q becomes, (12.2) requires the Fourier transform of the entire sample autocovariance. As the 
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lag � $ Q> the number of terms in the average (12.1) diminishes until the last lag has only a single 

value in it–a very poor average. While the lag 0 term may have thousands of terms in the average, 

the last term has only one. The Fourier transform of the sample autocovariance includes these very 

poorly determined sample covariances; indeed we know from (12.2) that the statistical behavior of the 

result must be exactly that of the periodogram–it is unstable (inconsistent) as an estimator because its 

variance does not diminish with Q= 

The origin of this instability is directly derived from the poorly estimated large-lag sample covari-
4ances. The Blackman-Tukey method does two things at once: it reduces the variance of the periodogram, 

and minimizes the number of elements which must be Fourier transformed. This is a bit confusing be-
˜cause the two goals are quite di�erent. Once one identifies the large lag � values of U (�) as the source 

of the statistical instability, the remedy is clear: get rid of them. One multiplies Ũ (�) by a “window” z� 

and Fourier transforms the result 
� =Q �1 X 

� ˜�̃ (v) =  U (�)z� exp (�2�lv�) (12.8) 
� = �(Q �1) 

By the convolution theorem, this is just ³ ´ 
� ˜�̃ (v) =  F U (�) F (z� ) (12.9)� 

If z� is such that its Fourier transform is a local averaging operator, then (12.9) is exactly what we seek, 

a local average of the periodogram. If we can select z� so that it simultaneously has this property, and 

so that it actually vanishes for |� | A P>  then the Fourier transform in (12.8) is reduced from being taken 

over Q -terms to over P ??  Q>  that is, 

� =P 1 X�
� ˜�̃ (v) =  U (�)z� exp (�2�lv�) = (12.10) 

� = �(P �1) 

The Blackman-Tukey estimate is based upon (12.9, and 12.10) and the choice of suitable window 

weights z� = A large literature grew up devoted to the window choice. Again, one trades bias against 

variance through the value P> which one prefers greatly to minimize. The method is now obsolete because 

the ability to generate the Fourier coe!cients directly permits much greater control over the result. The 

bias discussion of the Blackman-Tukey method is particularly tricky, as is the determination of �= Use of 

the method should be avoided except under those exceptional circumstances when for some reason only 

Some investigators made the situation much worse by the following plausible argument. For finite �>  the number of 

terms in (12.1) is actually not Q> but Q 3 |� | ; =they argued therefore, that the proper way to calculate U (�) was actually 

X1 
Q 313|� | 

Ũ1 (�) =  {w{w+� (12.7) 
Q 3 |� | 

q=0 

˜which would be (correctly) an unbiassed estimator of U (�) = They then Fourier transformed U1 (�) instead of U (�) = But 

this makes the situation much worse: by using (12.7) one gives greatest weight to the least well-determined components in 

the Fourier analysis. One has traded a reduction in bias for a vastly increased variance, in this case, a very poor choice 

U A>?  ˜indeed. (Bias does not enter if {w is white noise, as all terms of both ? ˜ U1 A vanish except for � = 0=) 
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˜ ˜U (�) is known. (For large data sets, it is actually computationally more e!cient to compute U (�) > 
˜ ˜should one wish it, by first forming �� (v) using FFT methods, and then obtaining U (�) as its inverse 

Fourier transform.) 

13. Colored Processes 

A complete statistical theory is readily available for white noise processes. But construction of the 

periodogram or spectral density estimate of real processes (e.g., Fig. 13) quickly shows that a white noise 

process is both uninteresting, and not generally applicable in nature. 

For colored noise processes, many of the useful simplifications for white noise break down (e.g., 

the zero covariance/correlation between Fourier coe!cients of di�erent frequencies). Fortunately, many 

of these relations are still asymptotically (as Q $ 4) valid, and for finite Q> usually remain a good 

zero-order approximation. Thus for example, it is commonplace to continue to use the confidence limits 

derived for the white noise spectrum even when the actual spectrum is a colored one. This degree of 

approximation is generally acceptable, as long as the statistical inference is buttressed with some physical 

reasoning, and/or the need for statistical rigor is not too great. Fortunately in most of the geophysical 

sciences, one needs rough rules of thumb, and not rigid demands for certainty that something is significant 

at 95% but not 99% confidence. 

As an example, we display in Fig. 14 the power density spectral estimate for the current meter com-

ponent whose periodogram is shown in Fig. 13. The 95% confidence interval shown is only approximate, 

as it is derived rigorously for the white noise case. Notice however, that the very high-frequency jitter 

is encompassed by the interval shown, suggesting that the calculated confidence interval is close to the 

true value. The inertial peak is evidently significant, relative to the background continuum spectrum at 

95% confidence. The tidal peak is only marginally significant (and there are formal tests for peaks in 

white noise; see e.g., Chapter 8 of Priestley). Nonetheless, the existence of a theory which suggests that 

there should be a peak at exactly the observed period of 12.42 hours would convince most observers of 

the reality of the peak irrespective of the formal confidence limit. Note however, that should the peak 

appear at some unexpected place (e.g., 10 hours) where there is no reason to anticipate anything special, 

one would seek a rigorous demonstration of its reality before becoming too excited about it. 

Another application of this type of analysis can be seen in Fig. 15, where the power density spectra 

of the tide gauge records at two Pacific islands are shown. For many years it had been known that there 

was a conspicuous, statistically significant, but unexplained, spectral peak near 4 days period at Canton 

Island, which is very near the equator. 

Plotting of Power Density Spectra 

Some words about the plotting of spectra (and periodograms) is helpful. For most geophysical 

purposes, the default form of plot is a log-log one where both estimated power density and the frequency 

scale are logarithmic. There are several reasons for this (1) many geophysical processes produce spectral 

densities which are power laws, v�t over one or more ranges of frequencies. These appear as straight 
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Figure 13. Periodogram of the zonal component of velocity at a depth of 498m, 

27.9�N,54.9�W  in the  North Atlantic,  plotted in four di�erent ways. (a) Both scales 

are linear. The highest value is invisible, being lost against the |�axis. The rest of the 
values are dominated by a peak at the local inertial frequency (i@2�)= In (b) a log-log 

scale is used. Now one sees the entirety of the values, and in particular the near power-

law like behavior away from the inertial peak. But there are many more frequency points 

at the high frequency end than there are at the low frequency end, and in terms of rela-

tive power, the result is misleading. 
2(c) A so-called area-preserving form in which a linear-log plot is made of v |�q| which 

compensates the abcissa for the crushing of the estimates at high frequencies. The rel-

ative power is proportional to the area under the curve (not so easy to judge here by 

eye), but suggesting that most of the power is in the inertial peak and internal waves 

(v A i@2�)= (d) shows a logarithmic ordinate against linear frequency, which emphasizes 

the very large number of high frequency components relative to the small number at 

frequencies below i@2�= 

lines on a log-log plot and so are easily recognized. A significant amount of theory (the most famous is 

Kolmogorov’s wavenumber n�5@3 rule, but many other theories for other power laws exist as well) leading 

to these laws has been constructed. (2) Long records are often the most precious and one is most interested 

in the behavior of the spectrum at the lowest frequencies. The logarithmic frequency scale compresses the 

high frequencies, rendering the low frequency portion of the spectrum more conspicuously. (3) The “red” 

character of many natural spectra produces such a large dynamic range in the spectrum that much of 

the result is invisible without a logarithmic scale. (4) The confidence interval is nearly constant on a log-

power density scale; note that the confidence interval (and sample variance) are dependent upon �̃� (v) > 



57 13. CO L O R E D P RO C E SSE S 

10 
-4 

10 
-2 

10 
0 

10 
0 

10 
2 

10 
4 

10 
6 

CYCLES/DAY 

(
2

 /
POWER DENSITY SPECTRAL ESTIMATE, W05461e, ~20 d. of f. 05-Sep-2000 16:37:20 CW 

M 
2 

0 0.2 0.4 0.6 0.8 
0 

2 

4 

6 

8 

10 
x 10 

5 

CYCLES/DAY 

) 2
 

f 

0 0.2 0.4 0.6 0.8 
10 

0 

10 
2 

10 
4 

10 
6 

CYCLES/DAY 

M
M

 2
 /

M 
2 

f 

10 
-4 

10 
-2 

10 
0 

0 

2000 

4000 

6000 

8000 

CYCLES/DAY 

2
 

M 
2 

(a) 
(b) 

(c) (d) 

f 

M
M

/S
) 

C
P

D
 

(M
M

/S
/C

P
D

 

C
P

D
 

(M
M

/S
) 

Figure 14. Four di�erent plots of a power spectral density estimate for the east com-

ponent of the current meter record whose periodogram is displayed in Fig. 13. There are 

approximately 20 degrees of freedom in the estimates. An approximate 95% confidence 

interval is shown for the two plots with a logarithmic power density scale; note that the 

high frequency estimates tend to oscillate within about this interval. (b) is a linear-

linear plot, and (d) is a so-called area preserving plot, which is linear-log. The Coriolis 

frequency, denoted i> and the principal lunar tidal peaks (M2) are marked. Other tidal 

overtones are apparently present. 

with larger estimates having larger variance and confidence intervals. The fixed confidence interval on 

the logarithmic scale is a great convenience. 

Several other plotting schemes are used. The logarithmic frequency scale emphasizes the low frequen-

cies at the expense of the high frequencies. But the Parseval relationship says that all frequencies are 

on an equal footing, and one’s eye is not good at compensating for the crowding of the high frequencies. 

To give a better pictorial representation of the energy distribution, many investigator’s prefer to plot 

v�̃� (v) on a linear scale, against the logarithm of v= This is sometimes known as an “area-preserving 

plot” because it compensates the squeezing of the frequency scale by the multiplication by v (simultane-

ously reducing the dynamic range by suppression of the low frequencies in red spectra). Consider how 

this behaves (Fig. 16) for white noise. The log-log plot is flat within the confidence limit, but it may not 

be immediately obvious that most of the energy is at the highest frequencies. The area-preserving plot 

looks “blue” (although we know this is a white noise spectrum). The area under the curve is proportional 
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Figure 15. Power spectral density of sealevel variations at two near-equatorial islands 

in the tropical Pacific Ocean (Wunsch and Gill, 1976). An approximate 95% confidence 

limit is shown. Some of the peaks, not all of which are significant at 95% confidence, 

are labelled with periods in days (Mf is however, the fortnightly tide). Notice that in 

the vicinity of 4 days the Canton Island record shows a strong peak (although the actual 

sealevel variability is only about 1 cm rms), while that at Ocean I. shows not only the 

4 day peak, but also one near 5 days. These results were explained by Wunsch and Gill 

(1976) as the surface manifestation of equatorially trapped baroclinic waves. To the 

extent that a theory predicts 4 and 5 day periods at these locations, the lack of rigor in 

the statistical arguments is less of a concern. (The confidence limit is rigorous only for 

a white noise spectrum, and these are quite “red”. Note too that the high frequency 

part of the spectrum extending out to 0.5 cycles/hour has been omitted from the plots.) 

to the fraction of the variance in any fixed logarithmic frequency interval, demonstrating that most of the 

record energy is in the high frequencies. One needs to be careful to recall that the underlying spectrum 

is constant. The confidence interval would di�er in an obvious way at each frequency. A similar set of 

plots is shown in Fig. (14) for a real record. 

Beginners often use linear-linear plots, as it seems more natural. This form of plot is perfectly 

acceptable over limited frequency ranges; it becomes extremely problematic when used over the complete 

frequency range of a real record, and its use has clearly distorted much of climate science. Consider Fig. 

17 taken from a tuned ocean core record (Tiedemann, et al., 1994) and whose spectral density estimate 

(Fig. 19) is plotted on linear-linear scale. 

One has the impression that the record is dominated by the energy in the Milankovitch peaks (as 

marked; the reader is cautioned that this core was “tuned” to produce these peaks and a discussion of 

their reality or otherwise is beyond our present scope). But in fact they contain only a small fraction 
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Figure 16. Power density spectral estimate for pseudorandom numbers (white noise) 

with about 12 degrees-of-freedom plotted in three di�erent ways. Upper left figure is a 

log-log plot with a single confidence limit shown, equal to the average for all frequencies. 

Upper right is a linear plot showing the upper and lower confidence limits as a function 

of frequency, which is necessary on a linear scale. Lower left is the area-preserving form, 

showing that most of the energy on the logarithmic frequency scale lies at the high end, 

but giving the illusion of a peak at the very highest frequency. 
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Figure 17. Time series from a deep-sea core (Tiedemann, et al., 1994). The time scale 

was tuned under the assumption that the Milankovitch frequencies should be prominent. 
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Figure 18. Linear-linear plot of the power density spectral estimate of the Tiedemann 

et al. record. This form may suggest that the Milankovitch periodicities dominate the 

record (although the tuning has assured they exist). 
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Figure 19. The estimated power density spectrum of the record from the core re-plotted 

on a log-log scale. Some of the significant peaks are indicated, but this form suggests that 

the peaks contain only a small fraction of the energy required to describe this record. 

An approximate 95% confidence limit is shown and which is a nearly uniform interval 

with frequency. 

of the record variance, which is largely invisible solely because of the way the plot suppresses the lower 

values of the much larger number of continuum estimates. Again too, the confidence interval is di�erent 

for every point on the plot. 
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Figure 20. Power density spectra from altimetric data in the western Mascarene Basin 

of the Indian Ocean. The result shows (B. Warren, personal communication, 2000) that 

an observed 60 day peak (arrow) in current meter records also appears conspicuously in 

the altimetric data from the same region. These same data show no such peak further 

east. As described earlier, there is a residual alias from the M2 tidal component at almost 

exactly the observed period. Identifying the peak as beng a resonant mode, rather than 

a tidal line, relies on the narrow band (pure sinusoidal) nature of a tide, in contrast to 

the broadband character of what is actually observed. (Some part of the energy seen in 

the peak, may however be a tidal residual.) 

As one more example, Fig. 20 shows a power density spectrum from altimetric data in the Mascarene 

Basin of the western Indian Ocean. This and equivalent spectra were used to confirm the existence of a 

spectral peak near 60 days in the Mascarene Basin, and which is absent elsewhere in the Indian Ocean. 

14. The Multitaper Idea 

Spectral analysis has been used for well over 100 years, and its statistics are generally well understood. 

It is thus surprising that a new technique appeared not very long ago. The methodology, usually known 

as the multitaper method, is associated primarily with David Thompson of Bell Labs, and is discussed 

in detail by Percival and Walden (1993). It is probably the best default methodology. There are many 

details, but the basic idea is not hard to understand. 

Thompson’s approach can be thought of as a reaction to the normal tapering done to a time series 

before Fourier transforming. As we have seen, one often begins by tapering {p before Fourier transforming 

it so as to suppress the leakage from one part of the spectrum to another. As Thompson has noted 

however, this method is equivalent to discarding the data far from the center of the time series (setting 

it to small values or zero), and any statistical estimation procedure which literally throws away data is 
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unlikely to be a very sensible one–real information is being discarded. Suppose instead we construct a 
(l)

series of tapers, call them zp > 1 l S in such as way that � � 

1Q �X 
z(l)z(m) (14.1)p p = �lm 

p=0 

(1)
that is, they are orthogonal tapers. The first one zp may well look much like an ordinary taper going 

to zero at the ends. Suppose we generate S new time series 

|(l) = {pz
(l) (14.2)p p 

(l)
Because of the orthogonality of the zp > there will be a tendency for 

1Q �X 
|(l) p |

(m) 0> (14.3)p � 
p=0 ¯ ¯2 

that is, to be uncorrelated. The periodograms ¯̄ �(nl)¯̄ will thus also tend to be nearly uncorrelated and if 

the underlying process is near-Gaussian, will therefore be nearly independent. We therefore estimate 

S ¯ X ¯212S�̃ (v) =  
S 

¯̄
 �
(
n
l)¯̄

 (14.4) 
l 

from these nearly independent periodograms. 
(l)

Thompson showed that there was an optimal choice of the tapers zp and that it is the set of prolate 

spheroidal wavefunctions (Fig. 21). For the demonstration that this is the best choice, and for a discussion 

of how to compute them, see Percival and Walden (1993) and the references there to Thompson’s papers. 

(Note that the prolate spheroidal wave functions are numerically tricky to calculate, and approximating 

sinusoids do nearly as well; see McCoy et al., 1998, who also discuss a special problem with the estimates 

near zero frequency) 

15. Spectral Peaks 

Pure sinusoids are very rare in nature, generally being associated with periodic astronomical phenom-

ena such as tides, or the Milankovitch forcing in solar insolation. Thus apart from phenomena associated 

with these forcings, deterministic sinusoids are primarily of mathematical interest. To the extent that 

one suspects a pure “tone” in a record not associated with an astronomical forcing, it would be a most 

unusual, not-to-say startling, discovery. (These are called “line spectra”.) If you encounter a paper claim-

ing to see pure frequency lines at anything other than at the period of an astronomical phenomenon, it’s 

a good bet that the author doesn’t know what he is doing. (Many people like to believe that the world 

is periodic; mostly it isn’t.) 

But because both tides and Milankovitch responses are the subject of intense interest in many fields, 

it is worth a few comments about line spectra. We have already seen that unlike a stochastic process, the 
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Figure 21. First 4 discretized prolate spheroidal wave functions (also known as Slepian 

sequences) used in the multitaper method for a data duration of 32. Methods for com-

puting these functions are described in detail by Percival and Walden (1993) and they 

were found here using a MATLAB toolbox function. Notice that as the order increases, 

greater weight is given to data near the ends of the observations. 

Fourier coe!cients of a pure sinusoid do not diminish as the record length, Q> increases (alternatively, 

the Fourier transform value increases with Q> while for the stochastic process they remain fixed in rms 

amplitude). This behavior produces a simple test of the presence of a pure sinusoid: double (or halve) 

the record length, and determine whether the Fourier coe!cient remains the same or changes. 

Much more common in nature are narrow-band peaks, which represent a relative excess of energy, 

but which is stochastic, and not a deterministic sinusoid. A prominent example is the peak in the current 

meter spectra (Fig.14) associated with the Coriolis frequency). The ENSO peak in the Southern Oscil-

lation Index (Wunsch, 1999) is another example, and many others exist. None of these phenomena are 

represented by line spectra. Rather they are what is sometimes called “narrow-band” random processes. 

It proves convenient to have a common measure of the sharpness of a peak, and this measure is provided 

by what electrical engineers call T (for “quality factor” associated with a degree of resonance). A damped 

mass-spring oscillator, forced by white noise, and satisfying an equation like 

g2 { g{ 
p 
gw2 gw 

+ n{ = � (w) (15.1)+ u 

1will display an energy peak near frequency v = (2�)�
p
n@p>= as in Fig. 22. The sharpness of the peak 

depends upon the value of u= Exactly the same behavior is found in almost any linear oscillator (e.g., an 
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Figure 22. (Top) Time series of displacement of a simple mass spring oscillator, driven 

by white noise, and computed numerically such that u@p = 0=1> n@p  = 1 with �w = 1= 

Lower left and right panels are the estimated power density spectrum plotted di�erently. 

The T here exceeds about 20. 

organ pipe, or an O F electrical circuit). Peak width is measured in terms of �
v0

T= > (15.2) 
�v 

(e.g., Jackson, 1975). Here v0 is the circular frequency of the peak center and �v is defined as the 

bandwidth of the peak at its half-power points. For linear systems such as (15.1), it is an easy matter to 

show that an equivalent definition is, 
2�H 

T = (15.3)
? gH@gw  A  

where here H is  the peak energy stored in the  system,  and  ? gH@gw  A  is  the mean rate of energy dissipated  

over one cycle. It follows that for (15.1), 
2�v0

T = (15.4) 
u 

(Jackson, 1975; Munk and Macdonald, 1960, p. 22). As u diminishes, the resonance is greater and 

greater, �v $ 0> ?  gH@gw  A$ 0> and T $4> the resonance becoming perfect. 
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Exercise. Write (15.1) in discrete form; calculate numerical {p for white noise forcing, and show 

that the power density spectrum of the result is consistent with the three definitions of T= 

Exercise. For the parameters given in the caption of Fig. 22, calculate the value of T= 

Values of T for the ocean tend to be in the range of 1 20 (see, e.g., Luther, 1982). The lowest free � 

elastic oscillation of the earth (first radial mode) has a T approaching 10,000 (the earth rings like a bell 

for months after a large earthquake), but this response is extremely unusual in nature and such a mode 

may well be thought of as an astronomical one. 

A Practical Point 

The various normalizations employed for power densities and related estimates can be confusing if 

one, for example, wishes to compute the rms amplitude of the motion in some frequency range, e.g., 

that corresponding to a local peak. Much of the confusion can be evaded by employing the Parseval 
2 �̃relationship (2.4). First compute the record variance, �̃ , and form the accumulating sum g (vq) =  

�̃

P ¡ ¢ q 
d2 + e2 

n=1 n n 

lying between any two frequencies, q> q0> must be g (vq) � 

> q  � [Q@2] > assuming negligible energy in the mean. Then the fraction of the power ³ ´ 
�̃g (v0 q) ˜@�g 

¡ ¢ 
v[Q@2] ; the root-mean-square 

amplitude corresponding to that energy is Ã r ! ³ ´ 
�̃@
s
2>�̃g (vq) � �̃g (v0 q) ˜@�g 

¡ ¢ 
v[Q@2] (15.5) 

˜and the normalizations used for � drop out. 

16. Spectrograms 

If one has a long enough record, it is possible to Fourier analyze it in pieces, often overlapping, so 

as to generate a spectrum which varies with time. Such a record, usually displayed as a contour plot 

of frequency and time is known as a “spectrogram”. Such analyses are used to test the hypothesis that 

the frequency content of a record is varying with time, implying a failure of the stationarity hypothesis. 

The inference of a failure of stationarity has to be made very carefully: the "2 probability density of any � 

spectral estimate implies that there is expected variability of the spectral estimates made at di�erent 

times, even if the underlying time series is strictly stationary. Failure to appreciate this elementary fact 

often leads to unfortunate inferences (see Hurrell, 1995 and the comments in Wunsch, 1999). 

The need to localize frequency structure in a time-or space-evolving record is addressed most gen-

erally by wavelet analysis. This comparatively recent development is described and discussed at length 

by Percival and Walden (2000) but often conventional spectrogram analysis is completely adequate (if 

seemingly less sophisticated). 
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17. E�ects of Timing Errors 

The problem of errors in the sampling times wp, whether regularly spaced or not, is not a part of 

the conventional textbook discussion, because measurements are typically obtained from instruments for 

which clock errors are normally quite small. But for instruments whose clocks drift, but especially when 

analyzing data from ice or deep ocean cores, the inability to accurately date the samples is a major 

problem. A general treatment of clock error or “timing jitter” may be found in Moore and Thomson 

(1991) and Thomson and Robinson (1996), with a simplified version applied to ice core records in Wunsch 

(2000). 

18. Cross-Spectra and Coherence 

Definitions 

“Coherence” is a measure of the degree of relationship, as a function of frequency, between two time 

series, {p> |p. The concept can be motivated in a number of ways. One quite general form is to postulate 

a convolution relationship, 

X4
|p = dn{p�n + qp (18.1) 

�4 

where the residual, or noise, qp> is uncorrelated with {p> ? qp{s A= 0= The dn are not random (they 

are “deterministic”). The infinite limits are again simply convenient. Taking the Fourier or }�transform 

of (18.1), we have 

|̂ = ˆ{+ ˆdˆ q= (18.2) 

Multiply both sides of this last equation by ˆ� and take the expected values {

? ˆ{ d ? ˆ{ qˆ|ˆ� A= ˆ {ˆ� A + ? ˆ{� A (18.3) 

where ? ˆ{qˆ� A= 0 by the assumption of no correlation between them. Thus, 

�|{ (v) = d̂ (v)�{{ (v) > (18.4) 

where we have defined the “cross-power” or “cross-power density,” �|{ (v) =? ˆ{|ˆ
� A = Eq. (18=4) can be 

solved for 

d̂ (v) =  
�|{ (v) 
�{{ (v) 

(18.5) 

and Fourier inverted for dq = 

Define 

F|{ (v) =  
�|{ (v) p

�|| (v)�{{ (v) 
= (18.6) 
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F|{ is called the “coherence”; it is a complex function, whose magnitude it is not hard to prove is 

|F|{ (v)| � 1.5 Substituting into (18=5) we obtain, s 
�|| (v)

d̂ (v) = F|{ (v) = (18.7) 
�{{ (v) 

Thus the phase of the coherence is the phase of d̂ (v) = If the coherence vanishes in some frequency band, 

then so does d̂ (v) and in that band of frequencies,  there  is  no  relationship  between  |q> {q. Should 

F|{ (v) =  1> then |q = {q in that band of frequencies. (Beware that some authors use the term 

“coherence” for |F|{|2=) 

Noting that 
2 

�|| (v) = |d̂ (v)| �{{ (v) +�qq (v) > (18.8) 

and substituting for d̂ (v) > ¯ s ¯2 

�|| (v) =  ̄
 ¯ ¯ ¯ F|{ (v) 

�|| (v) 
�{{ (v) 

¯ ¯ ¯ ¯ �{{ (v) +�qq (v) = |F|{ (v)|
2 
�|| (v) +�qq (v) (18.9) 

Or, ³ ´ 
�|| (v) 1� |F|{ (v)|

2 = �qq (v) (18.10) ³ ´ 
2That is, the fraction of the power in |q at frequency v> not related to {p> is just 1� |F|{ (v)| > 

and is called the “incoherent” power. It obviously vanishes if |F|{| = 1> meaning that in that band of  

frequencies, |q would be perfectly calculable (predictable) from {p = Alternatively, 

2 2 
�|| (v) |F|{ (v)| = |d̂ (v)| �{{ (v) (18.11) 

which is the fraction of the power in |q that is related to {q. This is called the “coherent” power, so that 

the total power in | is the sum of the coherent and incoherent components. These should be compared 

to the corresponding results for ordinary correlation above. 

Estimation 

As with the power densities, the coherence has to be estimated from the data. The procedure is 

essentially the same as estimating e.g., �{{ (v) = One has observations {q> |q = The �{{ (v) > ˜˜ �|| (v) are 

{ (vq) ˆestimated from the products ˆ { (vq)
�
, etc. as above. The cross-power is estimated from products 

|̂ (vq) {̂ (vq)
� 
; these are then averaged for statistical stability in the frequency domain (frequency band-

averaging) or by prior multiplication of each by one of the multitapers, etc., and the sample coherence 

obtained from the ratio 
˜� 

F� �|{ (v)˜
|{ (v) =  = (18.12)q 

˜� v) ˜��|| ( �{{ (v) 

Exercise. Let |q = {q + (1@2){q�1 + �q> where �q is unit variance white noise. Find, analytically, 

the coherence, the coherent and incoherent power as a function of frequency and plot them. 


 ® 
 ®5Consider ? (ˆ { + �|̂)W A= |ˆ | ̂ |W ̂{ + �|̂) (ˆ {|2 + � hˆ{Wi + �W hˆ {i + |�|2 ||̂|2 D 0 for any choice of �= Choose � = 

 
 ® 
 ® 

{W|̂i2 @ ||̂|2 
® 
and substitute. One has 1 3 hˆ|Wi2 @ |ˆ3 hˆ {ˆ {|2 |||2 D 0= 
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Figure 23. The coherence calculation involves summing vectors to produce a dominant 

direction (determined by the coherence phase) and amplitude determined by the degree 

of coherence. Here the true coherence � = 0> and � = 8  random vectors are being 

summed. That they would sum to a zero-length vector is very improbable. As � $4> 
the expected length would approach zero. 

˜�The Blackman-Tukey method would estimate �|{ (v) via the Fourier transform of the truncated 

(windowed) sample cross-covariance: Ã ! 
1 X1 

Q�
��̃|{ (v) = F z� {q|q+� > 

Q 
q=0 

in a complete analogy with the computation by this method of ˜� v) > etc. Again, the method should �{{ (

be regarded as primarily of historical importance, rather than something to be used routinely today. 

F�˜|{ (v) is a somewhat complicated ratio of complex random variates and it is a problem to estimate ¯ ¯ ¯ ˜ ¯
its probability density. As it is a complex quantity, and as the magnitude, ¯ F (v)¯ > and phase, !̃ (v) > have 

di�erent physical characteristics, the probability densities are sought for both. The probability density 

for the amplitude of the sample coherence was studied and tabulated by Amos and Koopmans (1962). 

As this reference is not so easily obtained, a summary of the results are stated here. One has to consider 

two time series for which the true coherence magnitude, at frequency v is denoted �= Then note first, the ¯D E¯ ¯ ¯
estimate (18.12) is biassed. For example, if � = 0 (no coherence), the expected value ¯ F�˜|{ (v) ¯ A 0= 

That is, the sample coherence for two truly incoherent time series is expected to be greater than zero 

with a value dependent upon �= As � $ 4> the bias goes to zero. More generally, if the coherence is ¯ ¯ ¯ 
F� ¯

finite, ¯ ? ˜|{ (v) A¯ A �>  there is a tendency for the sample coherence to be too large. 

The reasons for the bias are easy to understand. Let us suppose that the cross-power and auto-power 

densities are being estimated by a local frequency band averaging method. Then consider the calculation 
�of �̃|{ (v) > as depicted in Fig. 23 under the assumption that � = 0= One is averaging a group of vectors in 

the complex plane of varying magnitude and direction. Because the true coherence is zero, the theoretical 

average should be a zero magnitude vector. But for any finite number � of such vectors, the probability 
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Figure 24. Probability density for the sample coherence magnitude, |F|{ (v)| > when 

the true value,  � = 0  for � = 8= The probability of actually obtaining a magnitude of 

zero is very small, and the expected mean value is evidently near 0.3. 

that they will sum exactly to zero is vanishingly small. One expects the average vector to have a finite 

length, producing a sample coherence F�˜|{ (v) whose magnitude is finite and thus biassed. The division 

� v) ˜�by 
q 
�̃|| ( �{{ (v) is simply a normalization to produce a maximum possible vector length of 1= 

In practice of course, one does not know �> but must use the estimated value as the best available 

estimate. This di!culty has led to some standard procedures to reduce the possibility of inferential error. 

First, for any �> one usually calculates the bias level, which is done by using the probability density ¡ X �2n2 
4

�2 (� + n)]2n 

sF (]) =  
2 1� �2 

¢� 

] 
¡
1� ]2

¢��
� (�)� (� � 1) �2 (n + 1)  

(18.13) 
n=0 

for the sample coherence amplitude for � = 0 and  which  is  shown in Fig.  24  for  � = 8= A conventional  ¯ ¯ ¯ ¯
procedure is to determine the value F0 below which ¯ F�˜|{ (v)¯ will be confined 95% of the time. F0 is 

the “level of no significance” at 95% confidence. What this means is that for two time series, which are 

completely uncorrelated, the sample coherence will lie below this value about 95% of the time, and one 

would expect, on average for about 5% of the values to lie (spuriously) above this line. See Fig. 25. 

Clearly this knowledge is vital to do anything with a sample coherence. 

If a coherence value lies clearly above the level of no significance, one then wishes to place an error 

bound on it. This problem was examined by Groves and Hannan (1968; see also Hannan, 1970). As 

expected, the size of the confidence interval shrinks as � $ 1 (see Fig. 26). 

The probability density for the sample coherence phase depends upon � as well. If � = 0> the phase 

of the sample coherence is meaningless, and the residual vector in Fig. 23 can point in any direction at 
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Figure 25. Power densities (upper right) of two incoherent (independent) white noise 

processes. The theoretical value is a constant, and the horizontal dashed line shows the 

value below which 95% of all values actually occur. The estimated coherence amplitude 

and phase are shown in the left two panels. Empirical 95% and 80% levels are shown 

for the amplitude (these are quite close to the levels which would be estimated from the 

probability density for sample coherence with � = 0).  Because the  two time series are  

known to be incoherent, it is apparent that the 5% of the values above the 95% level of 

no significance are mere statistical fluctuations. The 80% level is so low that one might 

be tempted, unhappily, to conclude that there are bands of significant coherence–a 

completely false conclusion. For an example of a published paper relying on 80% levels 

of no significance, see Chapman and Shackleton (2000). Lower right panel shows the 

histogram of estimated coherence amplitude and its cumulative distribution. Again the 

true value is 0 at all frequencies. The phases in the upper left panel are indistinguishable 
˜from purely random, uniformly distributed, �� ! �=� � 

all–a random variable of range ±�= If � = 1> then all of the sample vectors point in identical directions, 

the calculated phase is then exactly found, and the uncertainty vanishes. In between these two limits, 

the uncertainty of the phase depends upon �> diminishing as � $ 1= Hannan (1970) gives an expression 
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Figure 26. (from Groves and Hannan, 1968). Lower panel displays the power density 

spectral estimates from tide gauges at Kwajalein and Eniwetok Islands in the tropical 

Pacific Ocean. Note linear frequency scale. Upper two panels show the coherence ampli-

tude and phase relationship between the two records. A 95% level-of-no-significance is 

shown for amplitude, and 95% confidence intervals are displayed for both amplitude and 

phase. Note in particular that the phase confidence limits are small where the coherence 

magnitude is large. Also note that the confidence interval for the amplitude can rise 

above the level-of-no-significance even when the estimated value is itself below the level. 

for the confidence limits for phase in the form (his p. 257, Eq. 2.11): 
� ¯ h i¯ ˜2 ¯ ˜ ¯ 1 � � 

¸¯ sin ! (v) � ! (v) ¯ � 
(2� � 2) ̃ 2 w2� 2 (�) = (18.14) 

� 
�

Here w2� 2 (�) is the �% point of Student’s w distribution with 2� 2 degrees of freedom. An alternative � � � 

approximate possibility is described by Jenkins and Watts (1968, p. 380-381). 

Exercise. Generate two white noise processes so that � = 0=5 at all frequencies. Calculate the coher-

ence amplitude and phase, and plot their histograms. Compare these results to the expected probability 

densities for the amplitude and phase of the coherence when � = 0= (You may wish to first read the 

section below on Simulation.) 
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Figure 27. Coherence between sealevel fluctuations and atmospheric pressure, north 

wind and eastwind at Canton Island. An approximate 95% level of no significance for 

coherence magnitude is indicated. At 95% confidence, one would expect approximately 

5% of the values to lie above the line, purely through statistical fluctuation. The high 

coherence at 4 days in the north component of the wind is employed by Wunsch and Gill 

(1976, from whom this figure is taken) in a discussion of the physics of the 4 day spectral 

peak. 

Figure 27 shows the coherence between the sealevel record whose power density spectrum was depicted 

in Fig. 15 (left) and atmospheric pressure and wind components. Wunsch and Gill (1976) use the 

resulting coherence amplitudes and phases to support the theory of equatorially trapped waves driven by 

atmospheric winds. 

The assumption of a convolution relationship between time series is unnecessary when employing 

coherence. One can use it as a general measure of phase stability between two time series. Consider for 

example, a two-dimensional wavefield in spatial coordinates r =(u{> u| ) and represented by 

XX 
� (r>w) =  dqp cos (kqp ·r !qp) (18.15)� �qpw � 

q p 



73 19. SIM U LAT IO N 

where the dqp are random variables, uncorrelated with each other. Define | (w) =  � (r1> w) > { (w) =  

� (r2> w) = Then it is readily confirmed that the coherence between {> | is a function of �r = r1 r2> as well �
as � and the number of wavenumbers kqp present at each frequnecy. The coherence is 1 when �r = 0, 

and with falling magnitude with growth in |�r| = The way in which the coherence declines with growing 

separation can be used to deduce the number and values of the wavenumbers present. Such estimated 

values are part of the basis for the deduction of the Garrett and Munk (1972) internal wave spectrum. 

19. Simulation 

In an age of fast computers, and as a powerful test of one’s understanding, it is both useful and 

interesting to be able to generate example time series with known statistical properties. Such simulations 

can be done both in the frequency and time domains (next Chapter). Suppose we have a power spectral 

density, � (v)–either a theoretical or an estimated one, and we would like to generate a time series having 

that spectral density. 

Consider first a simpler problem. We wish to generate a time series of length Q> having a given 

mean, p> and variance �2= There is a trap here. We could generate a time series having exactly this 

sample mean, and exactly this sample variance. But if our goal is to generate a time series which would 

be typical of an actual physical realization of a real process having this mean and variance, we must ask 

whether it is likely any such realization would have these precise sample values. A true coin will have a 

true (theoretical) mean of 0 (assigning heads as +1, and tails as -1). If we flip a true coin 10 times, the 

probability that there will be exactly 5 heads and 5 tails is finite. If we flip it 1000 times, the probability 

of 500 heads and tails is very small, and the probability of “break-even” (being at zero) diminishes with 

growing data length. A real simulation would have a sample mean which di�ers from the true mean 

according to the probability density for sample means for records of that duration. As we have seen ¡ ¢ 
above, sample means for Gaussian processes have a probability density which is normal J 0> �2@Q = If 

we select each element of our time series from a population which is normal J (0> �) > the result will have 

a statistically sensible sample mean and variance. If we generated 1000 such time series, we would expect ¡ ¢ 
the sample means to scatter about the true mean with probability density, J 0> �2@Q = 

So in generating a time series with a given spectral density, we should not give it a sample spectral 

density exactly equal to the one required. Again, if we generated 1000 such time series, and computed 

their estimated spectral densities, we could expect that their average spectral density would be very close 
2to the required one, with a scattering in a "� distribution. How might one do this? One way is to employ 

our results for the periodogram. Using 

¶[W@2] µ ¶ [W@2]�1 µX 2�qt X 2�qt 
|t = dq cos + eq sin = (19.1)

W W 
q=1 q=1 

dq> eq are generated by a Gaussian 

-random number generator J (0>� (vq)) such that ? dq A=? eq A= 0> ?  d2 A=? e2 A= q q 

� (v = q@W ) @2, ? dqdp A=? eq ep A= 0, p 6= q> ? dqep A= 0= The requirements on the dq> eq 
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Figure 28. A simulated time series with power density proportional to v� = Although 

just a “red-noise” process, the eye seems to see oscillatory patterns that are however, 

ephemeral. 

assure wide-sense stationarity. Confirmation of stationarity, and that the appropriate spectral density 

is reproduced can be simply obtained by considering the behavior of the autocovariance ? |w|t A (see 

Percival and Walden, 1993). A unit time step, w = 0> 1> 2> ===  is used, and the result is shown in Figure 28. 

(This result is rigorously correct only asymptotically as W $4> or for white noise. The reason is that 

for finite record lengths of strongly colored processes, the assumption that 

hdqdq0 i = heqeq0 i = 0> etc., is correct only in the limit (e.g., Davenport and Root, 1958)). 




