
CHAPTER 2 

Time Domain Methods 

Time domain methods do not employ any form of transform space to describe a time series (although 

it is commonly the case that one can best understand their structures by analyzing them in the frequency 

domain). The names most associated with these techniques are Wiener, and Box and Jenkins. As with 

the frequency domain methods, one can begin the discussion in continuous time and it was one of Wiener’s 

great contributions to show how to deal with that case. But continuous time representations raise all sorts 

of complex mathematical issues that disappear when a time series is made discrete, and so for present 

purposes, we will begin with the discrete case of a uniformly sampled time series {w = 

1. Representations-1 

As with Fourier methods, much of the purpose of these methods is to find e!cient representations 

of stochastic processes whose interpretation can lead to physical insights. For notational simplicity, we 

will assume that �w = 1= Consider the simple rule (actually a di�erence equation of similar form to (7.1) 

above), 

{p+1 = d{p + �p (1.1) 

where d is a constant and �p is a zero-mean white noise process of variance �2= Starting with {0 = 0> (1.1)� 

permits simple generation of realizations of {p depending upon the particular run of random numbers 

�p (Fig. 28). We can compute the autocovariance of {p : 

2U (0) =? {2 A=? (d{p�1 + �p�1)
2 A= d2U (0) + � (1.2)p � 

where we used  ? {p�1�p�1 A= 0> and the assumption that the time-series was wide-sense stationary 

(? {2 1 A=? {
2 A= U (0))= So,pp�

2�
U (0) = � 

(1 � d2) 
= (1.3) 

Evidently, there would be a problem if d = 1> and in fact,  |d| ? 1 proves to be necessary for the time-series 

to be stationary. Similarly, 

U (1) =? {p+1{p A=? (d{p + �p+1 ) {p A= dU (0) = (1.4) 

Exercise. Find U (2) > ===> U (p) for {w in (1.1). 
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If one knew U (0) and U (1), Eqs.  (1=3> 1=4) would fully determine d> �2 and they in turn fully � 

determine everything there is to know about it. Before asking how one might determine U (0) > U  (1) > let 

us ask where an equation such as (1.1) might arise? 

Consider a simple di�erential system 

g{ (w) 
= D{ (w) +  j (w) (1.5) 

gw 

where D is constant and � is any externally imposed forcing. Equations like this are used to describe, 

e.g., a local change in a heat content anomaly, { (w) > as the result of conduction from a reservoir, heat 

loss by radiation, and external sources j. Forming simple one-sided time di�erences, (1.5) becomes 

{ (p�w + �w) =  �w (D + 1)  { (p�w) +  �wj (p�w) (1.6) 

or, 

{p+1 = �w(D + 1){p + �wjp (1.7) 

which is of the form (1=1) with d = �w (D + 1)  = Two types of problem exist. In one, jp is known, and 

one seeks d; in the other type, jp = �p is unknown and believed to be a white noise process.. 

In the second type of problem one has observations of {w and the question is what the best estimates 

of d> �2 are. Let us try least-squares by minimizing, � 

1Q �X 
2M = ({p+1 � d{p) = (1.8) 

p=0 

The argument here would be that (1.1) can be regarded as an equation which forecasts {p+1 from {p> 

and minimizing the unpredictable part, �p, would give the best possible forecast system. The normal 

equations for (1.8) are just one equation in one unknown, 

1 2 X Q �Q � X 
d {2 = {p+1 {p = (1.9)p 
p=0 p=0 

Divide both sides of this equation by Q>and we see that it can be written as 

d ˜ U (1) > (1.10)U (0) = ˜

where we recognize  
1 X1 

Q �
{2 > (1.11)

Q p

p=0 

as an estimate of the true autocovariance U (0) > and similarly for U (1) = Given the resulting estimate of 

d> one can substitute into (1.8) and compute the estimate ˜d> call it ˜ � 2 = � 

A more general form of the representation of a time-series is, 

{p+1 = d1{p + d2{p�1 + === + dP {p�P +1 + �p+1> (1.12) 
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which is called an “autoregressive process of order P ” or AR(M), so that (1.1) is an AR(1) process. To 

determine the coe!cients dl we can proceed again by least-squares, to find the minimum of 

1Q �X 
2

M = ({p+1 � d1{p � d2{p�1 � === � dP {p�P +1) (1.13) 
p=0 

and forming the normal equations, 

d1U (0) + d2U (1) + d3U (2) + == + dP U (P � 1) = ˜˜ ˜ ˜ ˜ U (1) 

d1U (1) + d2U (0) + d3U (1) + == + dP U (P � 2) = ˜˜ ˜ ˜ ˜ U (2) 

=== (1.14) 

d1U (P � 1) + d1U (P � 2) + d3U (P � 3) = + = + dP U (0) = ˜˜ ˜ ˜ ˜ U (P ) 

U (�n) =  ̃where we used  ˜ U (n) = Equations (1.14) are usually known as the Yule-Walker equations. Solving 
Wthem produces an estimate of the vector of unknowns a = [d1> ===dP ] and the value of M is the estimate 

of �2= If (1.14) is written in matrix form � 

R̃a = b (1.15) 

one sees that R̃ is a covariance matrix having the special property that all diagonals have the same values: 

;
AAAAAAA? 

<
AAAAAAA@ 

˜ ˜ ˜ ˜U (0) U (1) U (2) = U(P � 1) 
˜ ˜ ˜ ˜U (1) U (0) U (1) = U(P � 2) 

˜ ˜ ˜ ˜ ˜R = U (2) U (1) U (0) = U(P � 3) (1.16)AAAAAAA
AAAAAAA> 

= = = = = 
˜ ˜ ˜ ˜U (p � 1) U(p � 2) U(p � 3) = U (0) = 

A matrix with constant diagonals is called “Toeplitz”, and the special form of (1.15) permits the system 

of equations to be solved without a matrix inversion, using an extremely fast recursive algorithm called 

the Levinson (or sometimes, Levinson-Derber) algorithm. This possibility is less important today than 

it was in the days before fast computers, but if P is extremely large, or very large numbers of systems 

have to be solved, the possibility can remain important. 

If jp is a known time-series, one can proceed analogously by minimizing via least-squares, the 

objective function 

1Q �X 
2M = ({p+1 � d{p � jp) (1.17) 

p=0 

with respect to d= Higher order generalizations are obvious, and details are left to the reader. 
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2. Geometric Interpretation 

There is a geometric interpretation of the normal equations. Let us define vectors (of nominally 

infinite length) as 

" #W 

xu = ==={u�1> {u�1> {u> 
% 
{u+1> {u+2>=== (2.1) 

" #W 

�u = ===�u�1 > �u�1> �u> 
% 
�u+1 > �u+2>=== (2.2) 

where the arrow denotes the time origin (these vectors are made up of the elements of the time series, 

“slid over” so that element u lies at the time origin). Define the inner (dot) products of these vectors in 

the usual way, ignoring any worries about convergence of infinite sums. Let us attempt to expand vector 

xu in terms of P � past vectors: 

xu = d1xu 1 + d2xu 2 + === + dP xu P + %u (2.3)� � �

where %u is the residual of the fit. Best fits are found by making the residuals orthogonal to the expansion 

vectors: 

W xu l (xu � d1xu === dP xu P ) = 0> 1 l P (2.4)� �1 � d2xu�2 � � � � �

which produces, after dividing all equations by Q , and taking the limit as Q $4> 

d1U (0) + d2U (1) + === + dP U (P � 1) = U (1) (2.5) 

d1U (1) + d2U (0) + === + U(P � 2) = U(2) (2.6) 

===> (2.7) 

that is precisely the Yule-Walker equations, but with the theoretical values of U replacing the estimated 

ones. One can build this view up into a complete vector space theory of time series analysis. By using the 

actual finite length vectors as approximations to the infinite length ones, one connects this theoretical 

construct to the one used in practice. Evidently this form of time series analysis is equivalent to the 

study of the expansion of a vector in a set of (generally non-orthogonal) vectors. 

3. Representations-2 

An alternative canonical representation of a time series is 

P X 
{p = dn �p�n > (3.1) 

n=0 

(P can be infinite), which called a moving average process of order P (an MA(P )). Here again �w is 

zero-mean white noise of variance �2= Notice that only positive indices dn exist, so that {p involves only � 
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the past values of �n = We can determine these dn by the same least-squares approach of minimizing an 

error, Ã !21 PQ �X X 
M = {p � dn �p�n > (3.2) 

p=0 n=0 

and leading to a set of normal equations, again producing a Toeplitz matrix. As with the AR problem, 

the real issue is deciding how large P should be. ³ ´2 PP
Exercise. Derive the normal equations for (3.2) and for M =? {p � n=0 dn �p�n A =  

Various theorems exist to show that any stationary discrete time series can be represented with 

arbitrary accuracy as either an MA or AR form. Given one form, it is easy to generate the other. 

Consider for example (3.1). We recognize that {p is being represented as the convolution of the finite 

sequence dn with the sequence �p = Taking the Fourier (or }) transform of {p produces, 

{ (}) = ˆˆ d (}) �̂ (}) (3.3) 

or, 

ˆ { (})ˆ
� (}) =  = (3.4)

d̂ (}) 

d (}) has a stable, causal, convolution inverse, such that ê (}) = 1@ˆAssuming that ˆ d (}) > we can write, by 

taking the inverse transform of (3.4) 
O X 

�p = en {p�n (3.5) 
n=0 

Normalizing e0 = 1> by dividing both sides of the last equation, we can recognize that (3.5) is in exactly 

the form of (1.12). 

Exercise. Convert the moving average process {p = �p � 1@3�p�1 + 1@4�p�2 into an AR process. 

What order is the AR process? 

Because of the reciprocal nature of the vectors a> b in the AR and MA forms, it is generally true 

that a finite length a generates a formally infinite length b> and vice-versa (although in practice, one may 

well be able to truncate the formally infinite representation without significant loss of accuracy). The 

question arises as to whether a combined form, usually called an autoregressive-moving-average process 

(or ARMA), might produce the most e!cient representation? That is, one might try to represent a given 

time series as 

{p � d1{p�1 � d2{p�2 � === � dQ {p�Q = �w + e1�p�1 + === + eP �p�P (3.6) 

in such a way that the fewest possible coe!cients are required. Taking the } transform of both sides of 

(3.6), we obtain 

{ (}) ˆˆ d (}) = �̂ (}) ê (}) (3.7) 
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(defining d0 = e0 = 1)= One can again use least-squares in either time or frequency domains. The major 

issues are once again the best choice of P> Q and this problem  is  discussed at length in the  various  

references. 

Exercise. An ARMA is given as 

1 1 
2
{p�1 = �p � 

8 
�p�1 (3.8){p � 

Convert it to (a)  an  AR, and  (b) a MA.  

If one has the simplest AR, 

{p = d{p�1 + �p (3.9) 

and takes its Fourier or }-transform, we have 

{̂ (}) (1� d}) = �̂ (}) (3.10) 

and dividing 

�̂ (})
{̂ (}) =  (3.11)

1� d} 
The Taylor Series about the origin is ¡ ¢ 

{̂ (}) = �̂ ({) 1 + d} + d}2 + d}3 + === (3.12) 

which converges on |}| = 1 if and only if |d| ? 1 and the corresponding MA form is 

X4
{p = dn �p�n (3.13) 

n=0 

where the magnitude of the contribution from the remote past of �p diminishes to arbitrarily small 

values. If we nonetheless take the limit d $ 1> we have a process 

X4
{p = �p�n (3.14) 

n=0 

with an apparent infinite memory of past random forcing. Note that the AR equivalent of (3.14) is simply 

{p = {p�1 + �p (3.15) 

–a more e!cient representation. 

This last process is not stationary and is an example of what is sometimes called an ARIMA (au-

toregressive integrated moving average). 

Exercise: Show that the process (3.14 or 3.15) has a variance which grows with time. 

Despite the non-stationarity, (3.15) is a very simple rule to implement. The resulting time series has 

a number of very interesting properties, some of which are described by Wunsch (1999) and Stephenson 

et al. (2000) including some discussion of their applicability as a descriptor of climate change. 



81  4.  SPECTR  AL  E  S  TIM  ATION  F  ROM  AR  M  A  FO  RM  S  

Exercise. Using a pseudo-random number generator, form a 10,000 point realization of (3.15). Cal-

culate the mean and variance as a function of sample length Q= How do they behave? What is the 

true mean and variance? Find the power density spectrum of the realization and describe it. Compare 

the results to realizations from (3.9) with d = 0=9999> 0=99> 0=9 and describe the behaviors of the sample 

averages and variance with sample length and the changes in the spectrum. 

Exercise. We can generalize the various representations to vector processes. Let 

xp = [{1 (p) > {2 (p) > ==={O (p)]
W 

be a vector time series of dimension O= Then a vector MA form is 
N X 

xp = An �p�n > (3.16) 
n=0 

where the An are matrices, and �p are vectors of white noise elements. Find the normal equations for 

determining An and discuss any novel problems in their solution. Discuss the question of whether the 

An should be square matrices or not. Define a vector AR form, and find the normal equations. What 

might the advantages be of this approach over treating each of the scalar elements {m (p) on its own? 

4. Spectral Estimation from ARMA Forms 

Suppose that one has determined the ARMA form (3.6). Then we have 

�̂ (}) ê (})
{̂ (}) =  (4.1)

d̂ (}) 

or setting } = exp  (�2�lv) > ¯ ¯2 ¯ˆ ¯ ¯ e (exp (�2�lv))¯ 
{ (exp(�2�lv))ˆ? ˆ { (exp(�2�lv))� A= � (v) =  

d (exp (�2�lv))|
2 � = (4.2)2 � |ˆ

If d> e are short sequences, then the calculation in (4=2) of the power density spectrum of the time series 

can be done essentially analytically. In particular, if ê = 1, so that one has a pure AR, the result is called 

the “all-pole” method, the power density spectrum being completely determined by the positions of the 

zeros of d̂ (}) in the complex } plane. Under some circumstances, e.g., when the time series is made up of 

two pure frequencies di�ering in frequency by �v in the presence of a white noise background, separation 

of the two lines can be achieved even if the record length is such that �v ?  1@W that is, in violation of 

the Rayleigh criterion. This possibility and related considerations lead to what is commonly known as 

maximum entropy spectral estimation. 

Exercise. Let {p = sin  (2�v1p)+  sin  (2�v2p)+  �p>p  = 0> 1> ===Q= Find an AR representation of {p 

and use it to calculate the corresponding power density spectrum. 

A considerable vogue developed at one time involving use of “exotic” methods of spectral representa-

tion, including, especially the maximum entropy method. Over time, the fashion has nearly disappeared 

because the more astute users recognized that maximum entropy etc. methods are dangerous: they can 
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give seemingly precise and powerful results apparently unavailable in the Fourier methods. But these 

results are powerful precisely because they rely upon the accuracy of the AR or ARMA etc. model. The 

sensitivity of e.g., (4=2) to the zero positions in d̂ (}) means that if the pure pole representation is not the 

correct one, the appearance of spectral peaks may be spurious. The exotic methods began to fade with 

the realization that many apparent peaks in spectra were the result of an incorrect model. Tukey (1984) 

and others, have characterized ARMA-based methods as “covert”, meaning that they hide a whole series 

of assumptions, and recommend reliance instead on the “overt” or non-parametric Fourier methods which 

are robust and hide nothing. This is good advice except for individuals who know exactly what they are 

doing. (Percival and Walden discuss these various methods at length.) 

5. Karhunen-Loève Theorem and Singular Spectrum Analysis 

The Q × Q> R matrix in Eq. (1.16) is square and symmetric. It is an important result of linear 

algebra that such matrices have an orthogonal decomposition 

R = V�VW (5.1) 

where � is a diagonal matrix, diag {�l} of the eigenvalues of R and V is the matrix of eigenvectors 

V = {vl} > such that 

Rvl =�lvl> (5.2) 

Wand they are orthonormal vl vm = �lm = (It follows that V�1 = VW =) 

Let us write a time-series as an expansion in the vt in the form " # 
Q X 

t 

p
�{q = element q of � t vt (5.3) 

t=1 

or more succinctly, if we regard {q as an Q�element vector, x> " # 
Q X 

t 

p
�x = � t vt = (5.4) 

t=1 

Here dt are unit variance, uncorrelated random variates, e.g., J (0> 1) = We assert that such a time-series 

has covariance matrix R> and therefore must have the corresponding (by the Wiener-Khinchin Theorem) 

power density spectrum. Consider 

Q Q XX 
A
p
�Ulm =? {l{m A= ? �t �u t �u ylt ymu 

t=1 u=1 

Q X 
= �t ylt ymt (5.5) 
t=1 

by the covariance properties of �t = But this last equation is just  n o 
Ulm = V�VW (5.6) 

lm 

which is what is required.  
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Exercise, Confirm (5.6). 

Thus (5.4) gives us another way of synthesizing a time series from its known covariance. That the 

decomposition (5.4) can always be constructed (in continuous time) for a stationary time series is called 

the Karhunen-Loève Theorem (see Davenport and Root, 1958). Because it is based upon a decomposition 

of the covariance matrix, it is evidently a form of empirical orthogonal function synthesis, or if one prefers, 

an expansion in principal components (see e. g., Jolli�e, 1986). 

The relative importance of any orthogonal structure, vl> to the structure of {q> is controlled by the 

magnitude of 
s
�l = Suppose one has been successful in obtaining a physical interpretation of one or more of 

the important vl = Each of these vectors is itself a time series. One can evidently compute a power density 

spectrum for them, either by Fourier or more exotic methods. The idea is that the spectra of the dominant 

vl are meant to be informative about the spectral properties of processes underlying the full time series. 

This hypothesis is a plausible one, but will only be as valid as the reality of the underlying physical 

structure attributed to vl = (At least two issues exist, determining when �l is significantly di�erent from 

zero, and obtaining a physical interpretation of the components. Principal components are notoriously 

di!cult to relate to normal modes and other physically generated structures.) This subject has come to 

be known as “singular spectrum analysis” (e.g. Vautard and Ghil, 1989) and its powers (and statistical 

information such as confidence limits) are still murky. 

6. Wiener and Kalman Filters 

6.1. The Wiener Filter. The theory of filtering of stationary time series for a variety of purposes 

was constructed by Norbert Wiener in the 1940s for continuous time processes in a notable feat of 

mathematics (Wiener, 1949). The work was done much earlier, but was classified until well after World 

War II). In an important paper however, Levinson (1947) showed that in discrete time, the entire theory 

could be reduced to least squares and so was mathematically very simple. This approach is the one used 

here. Note that the vector space method sketched above is fully equivalent too. 

The theory of Wiener filters is directed at operators (filters) which are causal. That is, they operate 

only upon the past and present of the time series. This requirement is essential if one is interested 

in forecasting so that the future is unavailable. (When the future is available, one has a “smoothing” 

problem.) The immediate generator of Wiener’s theory was the need during the Second World War for 

determining where to aim anti-aircraft guns at dodging airplanes. A simple (analogue) computer in the 

gunsight could track the moving airplane, thus generating a time history of its movements and some 

rough autocovariances. Where should the gun be aimed so that the shell arrives at the position of the 

airplane with smallest error? Clearly this is a forecasting problem. In the continuous time formulation, 

the requirement of causality leads to the need to solve a so-called Wiener-Hopf problem, and which can be 

mathematically tricky. No such issue arises in the discrete version, unless one seeks to solve the problem 

in the frequency domain where it reduces to the spectral factorization problem alluded to in Chapter 1. 

The Wiener Predictor 
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Consider a time series {p with autocovariance U{{ (� ) (either from theory or from prior observations). 

We assume that {p> {p�1 > ===>  are available; that is, that enough of the past is available for practical 

purposes (formally the infinite past was assumed in the theory, but in practice, we do not, and cannot 

use, filters of infinite length). We wish to forecast one time step into the future, that is, seek a filter to 

construct 
P X 

{̃p+1 = d0 {p + d1{p�1 + == + dP {p�P = dn {p�n > (6.1) 
n=0 

such that the dl are fixed. Notice that the causality of dn permits it only to work on present (time p) 

and past values of {s. We now minimize the “prediction error” for all times: X 
2

M = ({̃p+1 � {p+1) = (6.2) 
p 

This is the same problem as the one leading to (1.14) with the same solution. The prediction error is just 

2
S =? ({̃p+1 � {p+1) A 

P P P X XX 
= U(0) � 2 dn U (n + 1)  +  dn doU(n � o) � U (0) = (6.3) 

n=0 n=1 o=1 

2 2Notice that if {p is a white noise process, U (� ) =  �{{�� 0, dl = 0> and the prediction error is �{{ = 

That is to say, the best prediction one can make is {̃p+1 = 0  and Eq. (6.3) reduces to S = U (0) > the 

full variance of the process and there is no prediction skill at all. These ideas were applied by Wunsch 

(1999) to the question of whether one could predict the NAO index with any skill through linear means. 

The estimated autocovariance of the NAO is shown in Fig. 1 (as is the corresponding spectral density). 

The conclusion was that the autocovariance is so close to that of white noise (the spectrum is nearly 

flat), that while there was a very slight degree of prediction skill possible, it was unlikely to be of any real 

interest. (The NAO is almost white noise.) Colored processes can be predicted with a skill depending 

directly upon how much structure their spectra have. 

Serious attempts to forecast the weather by Wiener methods were made during the 1950s. They 

ultimately foundered with the recognition that the atmosphere has an almost white noise spectrum for 

periods exceeding a few days. The conclusion is not rigidly true, but is close enough that what linear 

predictive skill could be available is too small to be of practical use, and most sensible meteorologists 

abandoned these methods in favor of numerical weather prediction (which however, is still limited for 

related reasons, to skillful forecasts of no more than a few days). It is possible that spatial structures 

within the atmosphere, possibly obtainable by wavenumber filtering, would have a greater linear predic-

tion possibility. This may well be true, but they would therefore contain only a fraction of the weather 

variance, and one again confronts the issue of significance. To the extent that the system is highly non-

linear (non-Gaussian), it is possible that a non-linear filter could do better than a Wiener one. It is 

possible to show however, that for a Gaussian process, no non-linear filter can do any better than the 

Wiener one. 
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Figure 1. The estimated autocovariance of the North Atlantic Oscillation Index (NAO). 

Visually, and quantitatively, the autocovariance is dominated by the spike at the origin, 

and di�ers little from the autocovariance of a white noise process. By the Wiener filter 

theory, it is nearly unpredictable. See Wunsch (1999). 

Exercise. Find the prediction error for a forecast at n�time steps into the future. 

Exercise. Consider a vector time series, xp = [kp> jp]
W > where ? kpjp A6= 0. Generalize the 

Wiener prediction filter to this case. Can you find a predictive decomposition? 

A slightly more general version of the Wiener filter (there are a number of possibilities) is directed 

at the extraction of a signal from noise. Let there be a time series 

{p = Vp + qp (6.4) 

where Vp is the signal which is desired, and qp is a noise field. We suppose that ? Vpqp A= 0 and 

that the respective covariances UVV (�) =? VpVp+� A> Upq (�) =? qpqp+� A are known, at least 

approximately. We seek a filter, dp> acting on {p so that X 
dp{n�p � Vn (6.5) 

p 

as best possible. (The range of summation has been left indefinite, as one might not always demand 

causality.) More formally, minimize 

Q �1 
Ã !2 X X 

M = Vn � dp{n�p = (6.6) 
n=0 p 

Exercise. Find the normal equations resulting from (6.6). If one takes Vp = {p+1, is the  result  the  

same as for the prediction filter? Suppose dp is symmetric (that is acausal), take the Fourier transform of 
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the normal equations, and using the Wiener-Khinchin theorem, describe how the signal extraction filter 

works in the frequency domain. What can you say if dn is forced to be causal? 

6.2. The Kalman Filter. R. Kalman (1960) in another famous paper, set out to extend Wiener 

filters to non-stationary processes. Here again, the immediate need was of a military nature, to forecast 

the trajectories of ballistic missiles, which in their launch and re-entry phases would have a very di�erent 

character than a stationary process could describe. The formalism is not very much more complicated 

than for Wiener theory, but is best left to the references (see e.g., Wunsch, 1966, Chapter 6). But a 

sketch of a simplified case may perhaps give some feeling for it. 

Suppose we have a “model” for calculating how {p will behave over time. Let us assume, for 

simplicity, that it is just an AR(1) process 

{p = d{p�1 + �p = (6.7) 

Suppose we have an estimate of  {p�1> called {̃p�1> with an estimated error 

2
Sp�1 =? ({̃p�1 � {p�1) A =  (6.8) 

Then we can make a forecast of {p, 

{p (�) = ˜˜ d{p�1 (6.9) 

because �p is unknown and completely unpredictable by assumption. The minus sign in the argument 

indicates that no observation from time p has been used. The prediction error is now 

Sp (�) =? ({̃p (�)� {p)2 A= � 2 + Sp�1> (6.10)� 

that is, the initial error propagates forward in time and is additive to the new error from the unknown 

�p = Now let  us  further assume that we have a measurement  of  {p but one which has noise in it, 

|p = H{p + %p> (6.11) 

2 2where ? %p A= 0> ?  %2 A= �% > which produces  an estimate  |p@H> with error variance H�2�% . The  p 

observation of {p ought to permit us to improve upon our forecast of it, {̃p (�) = A plausible idea is to 

average the measurement with the forecast, weighting the two inversely as their relative errors: 

2 H�2 2�%{̃p = 
�� + Sp�1 

H�1|p +
(�� + Sp�1) + H

�2�2 
{p (�) (6.12)˜2 2(�� + Sp�1) +H

�2�2 
% % ¡ ¢ 

2 H�1 

= ˜ H˜{p (�) +  
�� + Sp�1 

{p (�)) (6.13)
(�2 + Sp�1) +H�2�2 (|p �
� % 

(See Wunsch, 1996, section 3.7). If the new data are very poor relative to the forecast, �2 $ 4> the % ¡ ¢ 
2estimate reduces to the forecast. In the opposite limit when �2 + Sp�1 AA H�2�% , the  new  data  give  � 

a much better estimate, and it can be confirmed that {̃p $ |p@H as is also sensible. 
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The expected error of the average is h i ¡
2
¢ ¡�

+ � 2Sp = H�2 �% 
1 

� + Sp�1 
¢ �1 �1 

(6.14) ¡ ¢ ¡ ¢2 £¡ 2 
¢ ¤

2 2 = � + Sp �� + Sp�1
2 �� + Sp�1 +H

�2 � 2 �1 
> (6.15)� � % 

which should be studied in the two above limits. Now we proceed another time-step into the future. The 

new best forecast is, 

˜ {p (6.16){p+1 = d˜

where {̃p has error Sp and we proceed just as before, with p $ p + 1. If there are no observations 

{p+1 = d˜available at time p> then the forecast cannot be improved, ˜ {p, and one keeps going with 

˜ {p+1. The Kalman filter permits one to employ whatever information is contained in a model 

(perhaps dynamical, as in orbital equations or an ocean circulation model) along with any observations of 

the elements of the system that come in through time. The idea is extremely powerful and many thousands 

of papers and books have been written on it and its generalizations.1 If there is a steady data stream, and 

the model satisfies certain requirements, one can show that the Kalman filter asymptotically reduces to 

the Wiener filter–an important conclusion because the Kalman formalism is generally computationally 

much more burdensome than is the Wiener one. The above derivation contains the essence of the filter, 

the only changes required for the more general case being the replacement of the scalar state { (w) by a 

vector state, x (w) > and with the covariances becoming matrices whose reciprocals are inverses and one 

must keep track of the order of operations. 

{p+2 = d˜

6.3. Wiener Smoother. “Filtering” in the technical sense involves using the present and past, 

perhaps infinitely far back, of a time-series so as to produce a best estimate of the value of a signal or to 

predict the time series. In this situation, the future values of {p are unavailable. In most oceanographic 

problems however, we have a stored time series and the formal future is available. It is unsurprising that 

one can often make better estimates using future values than if they are unavailable (just as interpolation 

is more accurate than extrapolation). When the filtering problem is recast so as to employ both past and 

future values, one is doing “smoothing”. Formally, in equations such as (6.5, 6.6), one permits the index 

p to take on negative values and finds the new normal equations. 

7. Gauss-Markov Theorem 

It is often the case that one seeks a signal in a noise background. Examples would be the determination 

of a sinusoid in the presence of a background continuum stochastic process, and the determination of 

a trend in the presence of other processes with a di�erent structure. A perhaps less obvious example, 

because it is too familiar, is the estimation of the mean value of a time series, in which the mean is the 

signal and the deviations from the mean are therefore arbitrarily defined as the “noise.” The cases one 

usually encounters in elementary textbooks and classes are some simple variant of a signal in presence of 

1Students may be interested to know that it widely rumored that Kalman twice failed his MIT general exams (in 

EECS). 
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white noise. Unfortunately, while this case is easy to analyze, it usually does not describe the situation 

one is faced with in practice, when for example, one must try to determine a trend in the presence of red 

noise processes, ones which may exhibit local trends easily confused with a true secular (deterministic) 

trend. This problem plagues climate studies. 

There are several approaches to finding some machinery which can help one to fall into statistical 

traps of confusing signal with noise. One widely applicable methodology is called variously “minimum 

variance estimation”, the “Gauss-Markov Theorem”, and in a di�erent context, sometimes the “stochastic 

inverse.” Although a more extended discussion is given in Wunsch (1996), or see Liebelt (1967) for a 

complete derivation, the following heuristic outline may help. 

Let there be some set of Q unknown parameters, written here as a vector, s= We suppose that they 

 ® 

have zero mean, ? s A= 0> and that there is a known covariance for s> Rvv = ss W = Let there be a set 

of P measurements, written here also as another vector y> also with zero mean, and known covariance 

? yyW A= R|| = Finally, we will assume that there is a known covariance between the measurements and 

the unknowns: Rv| =? sy
W A = Given these covariances (correlations), what can we say about s> given 

y> if we try to estimate any of the elements vl, as a linear combination of the measurements: 

P X 
ṽl = Elm |m = (7.1) 

m=1 

The question is, how should the weights, Elm be chosen? Arbitrarily, but reasonably, we seek Elm such 

that the variance of the estimated vl about the true value is as small as possible, that is, 
3 42+* D E p X 

2(ṽl � vl) = C Elm |m � vlD > 1 (7.2)� l � Q 
m=1 

should be a minimum. Before proceeding, note that Elm is really a matrix, and each row will be separately 

determinable for each element vl. This simple observation permits us to re-write (7.2) in a matrix-vector 

form. Minimize the diagonal elements of: 

W W 
s s? (̃ s) (̃ � s) A=? (By � s) (By � s) A P= (7.3)� � 

The important point here is that, in (7.3), we are meant to minimize the Q separate diagonal elements, 

each separately determining a row of B; but we can use the notation to solve for all rows simultaneously. 

At this stage, one expands the matrix product in (7.3), and uses the fact that quantities such as 

? ss W A= Rvv are known. One can show without too much di!culty (it involves invoking the properties 

of positive definite matrices) that the minimum of the diagonals is given by the unique choice, 

B = Rv| R
�1 (7.4)|| > 

with the first row being the solution for ṽ1> etc. 

The result (7.4) is general and abstract. Let us now consider a special case in which the measurements 

|t are some linear combination of the parameters, corrupted by noise, that is, |t = 
PQ Hto vo +qt > which o=1 
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can also be written generally as, 

Es + n = y= (7.5) 

With this assumption, we can evaluate 

W
Rv| =? s (Es + n) A= RvvE

W > (7.6) 

assuming ? sn W A= 0> and 

R|| = ERvvE
W + Rqq (7.7) 

Wwhere Rqq =? nn A. Then one has immediately, ¡
B = Rvv ERvv EW +Rqq 

¢ �1 
> (7.8) 

and ¡
s̃ = Rvv ERvv EW +Rqq 

¢ �1 
y= (7.9) 

There is one further, extremely important step: how good is this estimate? This question is readily 

answered by substituting the value of B back into the expression (7.3) for the actual covariance about 

the true value.  We obtain immediately,  ¡
ERvvE

W 
¢ 

P = Rvv Rvv E
W +Rqq ERvv = (7.10)� 

One of the benefits of the general approach is that we have obtain the complete matrix P, which  gives  

us not only the variances (uncertainties) of each of the ṽl about the true value, but also the covariances 

of these errors or uncertainties in each, with all the others–they do after all, depend upon the same 

data–so that it is no surprise that they would have correlated errors.) 

A special case, written out in Wunsch (1996), and which is particularly illuminating is the simple 

problem of determining a mean value (so that s is a scalar), in the presence of a noise field which has an 

arbitrary correlation. One finds there, that the uncertainty of the mean can be vastly greater than the 

conventional estimates based upon white noise, if the noise is correlated in time. 

Remark 2. A common complaint among beginning users of Gauss-Markov and related estimation 

methods is: “I have no idea what the covariances are. This all becomes completely arbitrary if I just 

make up something.” The answer to this worry is found by examining the statement “I have no idea what 

the covariances are.” If this is really true, it means that an acceptable answer for any element, ṽl could 

have any value at all, including something infinitesimal, 10�40> or astronomical, ±1040 and one would 

say “that’s acceptable, because I know nothing at all about the solution”. The reader may say, “that’s 

not what I really meant”. In fact, it is extremely rare to be completely ignorant, and if one is completely 

ignorant, so that any values at all would be accepted, the investigator ought perhaps to stop and ask if the 

problem makes any sense? More commonly, one usually knows something, e.g., that the parameters are 

very unlikely to be bigger than about ±V0. If that is all one is willing to say, then one simply takes 

0 IQ (7.11)Rvv = V2 



90 2. T IM E D O M A IN M E T H O D S 

with something analogous perhaps, for Rqq, which becomes an estimate of the noise magnitude. Letting 

V2 $4 is the appropriate limit if one really knows nothing, and one might study 7.10) in that limit. The0 

point is, that the estimation procedure can use whatever information one has, and one need not stipulate 

anything that is truly unknown. In particular, if one does not know the non-diagonal elements of the 

covariances, one need not state them. All that will happen is that a solution will be obtained that likely 

will have a larger uncertainty than one could have obtained had additional information been available. 

The more information one can provide, the better the estimate. A final comment of course, is that one 

must check that the solution and the errors left are actually consistent with what was postulated for the 

covariances. If the solution and noise residuals are clearly inconsistent with Rvv> etc., one should trash 

the solution and try to understand what was wrong; this is a very powerful test, neglected at one’s peril. 

If used, it can rescue even the naivest user from a truly silly result. 

8. Trend Determination 

A common debate in climate and other studies concerns the reality of trends in data. Specifically, 

one is concerned that an apparent linear or more complex trend should be distinguished, as secular, from 

local apparent trends which are nothing but the expected short-term behavior of a stochastic process. 

The synthetic time series displayed above show extended periods where one might be fooled into inferring 

a trend in climate, when it is nothing but a temporary structure occurring from pure happenstance. For 

geophysical problems, the existence of rednoise time series makes the problem quite di!cult. 

Suppose one has a stationary time series {t whose power density and corresponding autocovariance 

U (� ) are known. From U (� ) we can make a covariance matrix as in (1.16). We suspect that superimposed 

upon this time series is a linear secular trend representable as |t = d + et and we would like to determine 

d> e and their uncertainty. Generalizing the discussion in Wunsch (1996, p.188), we regard {t now as a 

noise process and d + et as a signal model. We can represent d + et + {t = jt > or 

Da + x = g> (8.1) 

where, ;
AAAAAAA

<
AAAAAAA@ 

1 0 

1 1 

1 2 
? 

W 
a = [d> e]W > D = > g = [j0> j1> ===> jQ �1] = (8.2)AAAAAAA

AAAAAAA> 
= = 

1 Q � 1 = 

Suppose that no a priori statistical information about d> e is available (that is, we would accept arbitrarily 

large or small values as the solution). Then the Gauss-Markov Theorem produces a best-estimate " # 
d £ ¤

˜ 1 a =
˜

= DW RD
�1 
DW R� g (8.3)

ẽ 
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with uncertainty ¡
1
¢ 

aP =? (˜ a)2 A= DW R� D 
�1 
= (8.4)� 

Clearly P depends directly upon the covariance R= If long-temporal correlations are present, apparent, 

but spurious trends, will probably be found. But the result (8.3) will have large expected uncertainties 

given by (8.4) and one would not be misled. 

Exercise. Generate a time series with power density � (v) =  1@(5@4+  cos  (2�v)). Add a known trend, 

and then determine it from the above expressions. 

9. EOFs, SVD 

A common statistical tool in oceanography, meteorology and climate research are the so-called em-

pirical orthogonal functions (EOFs). Anyone, in any scientific field, working with large amounts of data 

having covariances, is almost inevitably led to EOFs as an obvious tool for reducing the number of data 

one must work with, and to help in obtaining insight into the meaning of the covariances that are present. 

The ubiquity of the tool means, unfortunately, that it has been repeatedly reinvented in di�erent scientific 

fields, and the inventors were apparently so pleased with themselves over their cleverness, they made no 

attempt to see if the method was already known elsewhere. The consequence has been a proliferation 

of names for the same thing: EOFs, principal components, proper orthogonal decomposition, singular 

vectors, Karhunen-Loève functions, optimals, etc. (I’m sure this list is incomplete.) 

The method, and its numerous extensions, is a useful one (but like all powerful tools, potentially 

dangerous to the innocent user), and a brief discussion is o�ered here. The most general approach of 

which I am aware, is that based upon the so-called singular value decomposition (e.g., Wunsch, 1996 and 

references there). Let us suppose that we have a field which varies, e.g., in time and space. An example 

(often discussed) is the field of seasurface temperature (SST) in the North Pacific Ocean. We suppose 

that through some device (ships, satellites), someone has mapped the anomaly of SST monthly over the 

entire North Pacific Ocean at 1� lateral resolution for 100 years. Taking the width of the Pacific Ocean 

to be 120� and the latitude range to be 60� each map would have approximately 60×120 = 7200 gridded 

values, and there would be 12×100 of these from 100 years. The total volume of numbers would then be 

about 7200×1200 or about 9 million numbers. 

A visual inspection of the maps (something which is always the first step in any data analysis), would 

show that the fields evolve only very slowly from month-to-month in an annual cycle, and in some respects, 

from year-to-year, and that much, but perhaps not all, of the structure occurs on a spatial scale large 

compared to the 1� gridding. Both these features suggest that the volume of numbers is perhaps much 

greater than really necessary to describe the data, and that there are elements of the spatial structure 

which seem to covary, but with di�erent features varying on di�erent time scales. A natural question 

then, is whether there is not a tool which could simultaneously reduce the volume of data, and inform 
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one about which patterns dominated the changes in space and time? One might hope to make physical 

sense of the latter. 

Because there is such a vast body of mathematics available for matrices, consider making a matrix 

out of this data set. One might argue that each map is already a matrix, with latitude and longitude 

comprising the rows and columns, but it suits our purpose better to make a single matrix out of the 

entire data set. Let us do this by making one large column of the matrix out of each map, in some way 

that is arbitrary, but convenient, e.g., by stacking the values at fixed longitudes in one long column, one 

under the other (we could even have a random rule for where in the column the values go, as long it is 

the same for each time–this would just make it hard to figure out what value was where). Then each 

column is the map at monthly intervals, with 1200 columns. Call this matrix E, which is of dimension 

P =number of latitudes times the number of longitudes by Q> the number of observation times (that is, 

it is probably not square). 

We now postulate that any matrix E can be written 

E = U�VW (9.1) 

that is as the product of three matrices. � is a P × Q diagonal matrix (in a generalized sense for a 

non-square matrix). Matrix U is square of dimension P> and V is square of dimension Q= U> V have 

the special properties of being “orthogonal”, 

W = IQ > V
WUUW = IP > U

W U = IP > VV V = IQ (9.2) 

that is to say, in particular the columns of U are mutually orthonormal, as are the columns of V (so are 

the rows, but that proves less important). IQ is the identity matrix of dimension Q> etc. The matrices 

U> V>� can be shown, with little di!culty to be determined by the following relations: 

2 1>ull =� 

That is to say, the columns of U are the eigenvectors of EEW > and the columns of V are the eigenvectors 

of EW E= They are related to each other through the relations, 

Evl =�lul>1 � l � Q> Eul =�lvl> 1 l P= (9.4)� � 

Note that in (9.3,9.4), P> Q are in general di�erent, and the only way these relationships can be 

consistent would be if all of the �l = 0> l  A  min (P> Q) (this is the maximum number of non-zero 

eigenvalues; there may be fewer). By convention, the �l and their corresponding ul> vl are ordered in 

decreasing value of the �l = 

Consider EW E in (9.3) This new matrix is formed by taking the dot product of all of the columns of E 

with each other in sequence. That is to say, EW E is, up to a normalization factor of 1@P> the covariance 

of each anomaly map with every other anomaly map and is thus a covariance matrix of the observations 

through time and the vl are the eigenvectors of this covariance matrix. Alternatively, EE
W is the dot 

product of each row of the maps with each other, and up to a normalization of 1@Q is the covariance of 

WEE 2 1>vlll P> EW l � Q= (9.3)Evlul =�� � � 
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the structure at each location in the map with that at every other point on the map; the ul are thus the 

eigenvectors of this covariance matrix. 

Consider by way of example, EW E= This is a square, non-negative definite matrix (meaning its 
2eigenvalues are all non-negative, a good thing, since the eigenvalues are the �l , which we might hope 

would be a positive number). From (9.1, 9.2), 

Q X 
2 WEW E = V� 2VW = �l vlvl > (9.5) 

l=1 

Eq. (9.5) is an example of the statement that a square, symmetric matrix can be represented exactly in 

terms of its eigenvectors. Suppose, only N � Q of the �l are non-zero. Then the sum reduces to, 

N X 
2 W 2EW E = �l vlv = VN �N V

W (9.6)l N > 
m=1 

where �N is truncated to its first N rows and columns (is now square) and VN contains only the first n 

columns of V= Now suppose that some of the �l are very small compared, e.g., to the others. Let there be 

N0 of them, much larger than the others. The question then arises as to whether the further truncated 

expression, 
N0 X 

2 W 2EW E �l vlv = VN0 �N0 V
W (9.7)� l N0 > 

l=1 

is not still a good approximation to EW E? Here, VN0 consists only of its first N0 columns. The assump-

tion/conclusion that the truncated expansion (9.7) is a good representation of the covariance matrix 

EW E> with N0 ?? N is the basis of the EOF idea. Conceivably N0 is as small as 1 or 2, even when there 

may be hundreds or thousands of vectors vl required for an exact result. An exactly parallel discussion 

applies to the covariance matrix EEW in terms of the ul. 

There are several ways to understand and exploit this type of result. Let us go back to (9.1). 

Assuming that there are N non-zero �l, it can be confirmed (by just writing it out) that 

N X 
WE = UN �N V

W = (9.8)N �lulvl 
l=1 

exactly. This result says that an arbitrary P × Q matrix E can be represented exactly by at most N 

pairs of orthogonal vectors, where N � min (P> Q) = Suppose further, that some of the �l are very small 

compared to the others Then one might suppose that a good approximation to E is 

N0 X 
UN �N0 VWE � N0 = �lul v W = (9.9)l 

l=1 

If this is a good approximation, and N0 ?? N> and because E are the actual data, it is possible that only 

a very small number of orthogonal vectors is required to reproduce all of the significant structure in the 

data. Furthermore, the covariances of the data are given by simple expressions such as (9.7) in terms of 

these same vectors. 
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The factorizations (9.1) or the alternative (9.8) are known as the “singular value decomposition”. 

The �l are the “singular values”, and the pairs (ul> vl ) are the singular vectors. Commonly, the vl are 

identified as the EOFs, but they can equally well be identified as the ul; the choice is arbitrary, depending 

only upon how one seeks to interpret the data. 

Eq. (9.9) can be discussed slightly di�erently. Suppose that one has an arbitrary E= Then if one 

seeks to represent it in O pairs of orthonormal vectors (ql> rl) 

O X 
E � �lqlr Wl > (9.10) 

l=1 

then the so-called Eckart-Young-Mirsky theorem (see references in Wunsch, 1996) states that the best 

choice (in the sense of making the norm of the di�erence between the left and right-hand sides as small 

as possible), is for the(ql> rl) to be the first O singular vectors, and �l = �l. 

Exercise. Interpret the Karhunen-Loève expansion and singular spectrum analysis in the light of the 

SVD. 

Exercise. (a) Consider a travelling wave | (u> w) = sin  (nu + �w) > which is observed at a zonal  set  

of positions, um = (m � 1)�u at times ws = (s � 1)�w= Choose, n> �> �u> �w so that the frequency and 

wavenumber are resolved by the time/space sampling. Using approximately 20 observational positions 

and enough observation times to obtain several temporal periods, apply the SVD/EOF analysis to the 

resulting observations. Discuss the singular vectors which emerge. Confirm that the SVD at rank 2 

perfectly reproduces all of the data. The following, e.g., would do (in MATLAB) 

» x=[0:30]’;t=[0:256]’; 

» [xx,tt]=meshgrid(x,t); 

» sigma=2*pi/16;k=2*pi/10; 

» Y=sin(k*xx+sigma*tt); 

» contourf(Y);colorbar; 

(b) Now suppose two waves are present: | (u> w) = sin  (nu + �w) + sin((n@2) u + (�@2) w)= What are 

the EOFs now? Can you deduce the presence of the two waves and their frequencies/wavenumbers? 

(c) Repeat the above analysis except take the observation positions um to be irregularly spaced. What 

happens to the EOFs? (d) What happens if you add a white noise to the observations? 

Remark 3. The very large literature on and the use of EOFs shows the great value of this form of 

representation. But clearly many of the practitioners of this form of analysis make the often implicit 

assumption that the various EOFs/singular vectors necessarily correspond to some form of normal mode 

or simple physical pattern of change. There is usually no basis for this assumption, although one can 

be lucky. Note in particular, that the double orthogonality (in space and time) of the resulting singular 

vectors may necessarily require the lumping together of real normal modes, which are present, in various 
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linear combinations required to enforce the orthogonality. The general failure of EOFs to correspond to 

physically interpretable motions is well known in statistics (see, e.g., Jolli�e, 1986). A simple example 

of the failure of the method to identify physical modes is given in Wunsch (1997, Appendix). 

Many extensions and variations of this method are available, including e.g., the introduction of 

phase shifted values (Hilbert transforms) with complex arithmetic, to display more clearly the separation 

between standing and travelling modes, and various linear combinations of modes. Some of these are de-

scribed e.g., by von Storch and Zwiers (1999). Statistics books should be consulted for the determination 

of the appropriate rank and a discussion of the uncertainty of the results. 




