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Setting up the optimization problem we have:
L(p1, p2,m) = u(w1, 12) + AM(m — p121 — paa)
The FOC yield:
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Dividing (1) from (2) yields:
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Setting up the optimization problem we have:

L(p1,p2, m) = v(u(x1, x2)) + A(m — p121 — paa)
The FOC yield:
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Dividing (1) from (2) yields:
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Notice that as long as v'(u(x1, z3)) is never equal to zero, problem b problem has
exactly the same solution as the problem in part a. Thus monotonic transforma-
tions do not alter the marshallian demand functions

As we did in recitation, we take the log of the function and show that this is
monotonic and convex:

Monotinicity:
aln(z +¢,) +In(y +¢4) > aln(z) + In(y) Ve, e, > 0
Convexity:
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Since 2’ Mz < 0, the utility curve is quasiconcave which imply that the indifference
curves are Convex.



(b)

K(a,p1,p2) =alnz+Iny+ Ag(m —x —py) + \yo + Ay
Taking FOC:
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Assume A\, >0 — 2 =0— Agp =00 — y = 0,Contradicts (3)
Assume A, >0 — y =0 — Ag = 00 — z = 0, Contradicts (3)

Setting A, A\, = 0, we can divide (1) by (2) to find: % = % — x = apy

Plugging these into (3) yeilds:
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Note that this problem would be very easy if we ignore the inequality constraints.
See problem 4

K(o,p1,p2) =lnz+y+Ap(10 — 22 —y) + Az + Ay
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Assume \;, =0 -2 =0— Ag =00 — A\, > 0— y=0: Contradition w/ (3)

Dividing (1) by (2) we have:
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Notice that utilities where the constraints may bind are those where the MRS
does not go off to infinity. If you think about it for a bit, this should make sense.
The FOC for the standard utiltiy function sets MRS :z%' If the MRS goes to
infinity this says that for any price vector, there is a place on the utility curve in
R? that has the same slope.



