Econ 14.04 Fall 2006

Assignment 2: Indirect Utility, Expenditure Functions, and Duality

The due date for this assignment is Friday September 29.

Reading assignment: Sections 1-7.

1. *Deriving the Envelope Thoerem: Consider the more general problem $M(\alpha, \beta) = \max_x f(x, \alpha, \beta)$ subject to $g(x, \alpha, \beta) = 0$. Show that:

$$\frac{dM(\alpha, \beta)}{d\alpha} = \frac{\partial f(x^*, a, b)}{\partial a} + \lambda \frac{\partial g(x^*, a, b)}{\partial a}$$

- 2. For each of the following, derive $\mathbf{x}(\mathbf{p},m)$, $\mathbf{h}(\mathbf{p},u)$, $v(\mathbf{p},m)$, $\mathbf{h}(\mathbf{p},u)$ using the standard budget constraint $p_1x_1 + p_2x_2 = m$:
 - (a) $u(x_1, x_2) = \max(x_1, x_2)$
 - (b) $u(x_1, x_2) = \min(x_1, x_2)$
 - (c) $u(x_1, x_2) = 2x_1 + x_2$
 - (d) $u(x_1, x_2) = x_1^{1/2} x_2^{1/3}$
 - (e) $u(x_1, x_2) = \frac{1}{2} \ln x_1 + \frac{1}{3} \ln x_2$
 - (f) What happens if we replace u by e^{u^*} in part (e)? Compare this to part (d). Can you work out an easy way to derive the hicksian demand functions of a function when you make monotonic transformations of the original function?
- 3. *A besotted mathematician named Donic consumes either gin or tonic. His preferences are rare 'cause he thinks in the square in a way that is almost sardonic.

Specifically, Donic prefers larger drinks to smaller drinks but requires that the square of the amount of lime in a drink equal the sum of the squares of the amounts of gin and tonic. Find a utility function that represents Donic's preferences. Find Donic's Marshalian demand functions for lime, tonic, and gin.

- 4. (From Midterm 2005) Consider a consumer with a utility function $u(x_1, x_2) = e^{(x_1 + \ln(x_2))^{1/3}}$
 - (a) What properties about utility functions will make this problem easier to solve?
 - (b) Which of the non negativity input demand constraints will bind for small m?
 - (c) Derive for the marshallian (uncompensated) demand functions and the indirect utility function.
 - (d) Derive the expenditure function in terms of original utils u.
- 5. Consider the indirect utility function given by:

$$v(p_1, p_2, m) = \frac{m}{p_1 + p_2}$$

1

(a) What are the demand functions

- (b) What is the expenditure function?
- (c) What is the direct utility function?
- 6. *Consider the utility function:

$$u(x_1, x_2) = \min(2x_1 + x_2, x_1 + 2x_2)$$

- (a) Draw the indiference curve for $u(x_1, x_2) = 20$. Shade the area where $u(x_1, x_2) \ge 20$
- (b) For what values of $\frac{p_1}{p_2}$ will the unique optimum be $x_1 = 0$
- (c) For what values of $\frac{p_1}{p_2}$ will the unique optimum be $x_2 = 0$
- (d) If neither x_1 and x_2 is equal to zero, and the optimum is unique, what must be the value of $\frac{x_1}{x_2}$?
- 7. Assume that there is a consumer with weakly monotonic, convex preferences and who is a utility maximizer. For each of the following pairs of bundles, specify if bundle 1 is \succeq , \preceq , or uncomparable to bundle 2.
 - (a) Suppose you have no data:
 - 1. Bundle 1: $x_1 = 3, x_2 = 3$, Bundle 2: $x_1 = 6, x_2 = 2.5$
 - 2. Bundle 1: $x_1 = 3, x_2 = 3$, Bundle 2: $x_1 = 2.5, x_2 = 2.5$
 - (b) Suppose that you observe that when $p_1=1, p_2=1, m=10$ the consumer chooses $x_1=2, x_2=8$
 - 1. Bundle 1: $x_1 = 4$, $x_2 = 1$, Bundle 2: $x_1 = 3$, $x_2 = 6$
 - 2. Bundle 1 $x_1 = 6, x_2 = 4$, Bundle 2: $x_1 = 3, x_2 = 8$
 - (c) Suppose that we have two observations. When $p_1 = 1, p_2 = 1, m = 10$ the consumer chooses $x_1 = 2, x_2 = 8$. When $p_1 = 1, p_2 = 3, m = 15$ the consumer chooses $x_1 = 15, x_2 = 0$
 - 1. Bundle 1: $x_1 = 5, x_2 = 2$, Bundle 2: $x_1 = .0, x_2 = 2.5$
 - 2. Bundle 1: $x_1 = 5, x_2 = 2$, Bundle 2: $x_1 = 6.5, x_2 = 0$