Econ 14.04 Fall 2006
Assignment 3: Solutions

a) if we were to replace § with o, —— with p;, and ¢y, ¢; with 2o, 27 our problem is
1+r
identical to:
maxu(zg, v1) = In(zg) + d1n(xy)
Z0,T1
st xzo+ P11 = Ww
(b) Taking the FOC we have:
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Substitution into the budget constraint yields:

W

ro(0,7) = T35
Ol +r

x1(d,7) = —(1+5)

(¢) when §(1 +7) = 1, then the marshallian demands are equal. In macro the usual
condition is phrased: "when the discount rate is equal to the interest rate"

(d) To maximize profits, the agent solves:
max p,x + pyy
st 1 2t 4yt=2

Note that we do not have to worry about corner solutions because the production
possiblity set is a circle and thus when the production set hits the corners, the
slopes are zero and infinity respectively. Thus, there is no price vector %that is
not tangent to the PPC before hitting the corners. Solving the FOC we get:

pe+X2x = 0

Thus:
Pe T
Dy Yy

Plugging these into the production constraint yields:
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(e)

o2 \*
$<pxapy) -

pi+p;

2p2 1/2
Y(parpy) = ( y )

pi+p;

Dz = py = 1, thus:
T(Das Py) = Y(Pa,py) = 1

We must find the discount rate such that production equals consumption. This
will be met if:
Cop = C1 = 1

From part ¢ we know that this must be § = 1.
Setting up the legrangian we have:

K :2r—2* + \(K — )
The FOC of this is:

0K

L 2-22-A=0

ox o

K

%—)\ (K—2)>0,A>0,(K—2)A=0

A(K) = max((2 — 2K),0). Notice that the slope of 2z — 2? = 2 — 2z. In places
where the constraint binds x = K and thus the legrangian multiplier is exactly
equal to the slope of the function. In economics, A is often called the "shadow
cost." It corresponds to the amount that the agent would be willing to pay to
change the constraint slightly. Notice that if the constraint K is binding and is
moved slightly from K to K + ¢, M would change by:

lim M (K + ) - M(K)

As ¢ goes to zero and we multiply the top and the bottom of this by a little bit
we get:
M(K - M(K
lim ¢ MUK +e) — M(K)

e—0 g

The second term in this is simply the slope. Thus

When the constraint is not binding;:

lim M(K +¢) — M(K) =0

e—0

But this is identical to A\e since A = 0. Thus:

lim M (K +¢) — M(K) = eA(K)

e—0

In the entire domain.



(b) If we think about Reimann Integration, we will recognize the above difference as

(c)

exactly one of our rectangles underneath a curve. Thus, to find the rate of change
over an area, we are simply going to add up a bunch of rectangles as their widths
go to zero. A bit more formally:

N

M(E)~M(Ky) = lim 5 [M(KO + (K, — Ko)

N—oo =y

1+ 1 7
N )—M(K0+(K1—KO)N)

Notice that as N gets bugger the difference between % and % gets smaller and

smaller. Eventually we get something that looks identical to the above:

lim ﬁ [M(K—l—

N—oo ;=1

1+ 1
N

)~ MK + )| = Zf:A(K)dK

We could get the same thing using the envelope thm, Recall that the envelope
thm says that we can ignore the marginal effects of K on the optimal x to find
the change of M with a change in K. Thus:

dM (z(K), K)

dK =

In order to find the change over a larger area we simply add up all the marginal
changes:
dM(z(K), K)

M) - M(Ky) = [ S0

dK = [ A\(K)
Setting up the FOC:

K :aln(z) 4+ (1 — a)In(y) + A(m — p.2 + pyy))

0K o
ekl — = \p,
ox T P
0K 1—«
ox Y Py
Thus:
@« ¥ _Pe
l—ax py
and:
1—a)m
Y(pa, py,m) = d=ajm
Py
( ) am
T\Pz, Py, M) =
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1
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3.

(a)

2. 22 = \(a). Thus:

kk * m** 1 kk *
V(P Dy, M) — V(pa, py, m*) = [ Edm = In(m™) — In(m™)
You could check this by plugging everything into the indirect utiltiy function
and noting that the indirect utility function has In(m) as a seperate term.

P m**
3. v(py*, py,m) —v(ph, pyym) = — [ atdm = — [ dm = aln(p;)—aln(p;’)
Pi m*

vINM utility functions are unique up to an affine transformation which has two
degrees of freedom. For convenience, I will use the convention that u(A) =
1,u(D) = 0. From the text:

u(B) pu(A) + (1 —p)u(D) =p
Also from the text:
u(C) =qU(b) + (1 —q)U(D) = pq

Thus a utility function of the expected utitliy form that represents these prefer-
ences has:

u(4) =

u(B) = p

u(C) = pq

wD) = 0

UL = Y ), Y =1
1€{A,B,C,D) i€{A,B,C,D)

To judge a criterion we look at the probability of the four cases:
Criterion 1:

Pr(No Evacuation Nec&None Performed) = Pr(4) = _99 =x 9 = .891
No Flood  Evac|NoFlood

Pr(No Evacuation Nec&Performed) = Pr(B)=.99x.1 =.099
Pr(Evacuation Nec&Performed) = Pr(C) = .01%.9 =.009
Pr(Evacuation Nec&None Performed) = Pr(C)=.01x.1 =.001

Thus the total utility in this case is:
891U (A) + .099U(B) + .009U (C') + .001U (D) = .99(.9 + .1p) + .01(.9pq)
Criterion 2:
(.99 % .95)U(A) + (.99 % .05)U(B) + (.01 % .95)U(C) = .99(.95 + .05p) + .01(.95pq)
Subtracting Criterion 2 from Criterion 1 yields:
.99(.05 — .05p) + .01(.05pq)

Since pe (0, 1) criterion 2 is strictly preferred.
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4.

(a) This is a simple result of the envelope theorem:

m(p)=> 1y

yey
From the FOC: P
Yj
pi+t 2 P =0
J#i ! Y
So:
Ay dy;
p-yp) =yp)+ j +pi| =Yy
Xr) =y + G | S5 )
0
(b) Ignoring shut down for a minute, the firm that is forced to produce would maxi-
mize:
pln(z) — wzx
The FOC is:
p _ b
— = — = —
x w

Plugging these into the maximand we have:
P p
m(p,w) = pIn(=-) —p = p |In(-")

This is only positive when In(2) > 1. Thus:

L In(E)>1

T = 0 otherwise
o [ln(%) — 1} ln(ﬁ) >1
m(p,w) = 0 otherwise

(a) We see that the isoquant will always have a kink at 27 = 5. Thus a profit
maximizing firm will either choose to not produce (z; = x3), or use the same
ratio of factor one and two

(b) plugging in 27 = x5 :

max pry — (wy + wa)xy
FOC:
paxf ™t = (wy + )
Thus:

1 1

(&3

y(p, wr,we, ) = ((L)l_a

w1 + wg)

o

_a 1
pa 11—« (wl + w2) a—1
7(P7w1,w2,04) = P m —w p—a

The second derivative is negative iff & < 1. Otherwise the production function is
CRTS or IRTS and z; = 29 = 00



(c) 1. Seeii
2.

minwlxl + WaZo
. o __
ST : xf=z25=y

We don’t need to take the FOC, simply note that for a given y:
1
xl(wlv wa, &, y) = ‘TQ(wb w2, &, y) =Y
1
C(U}hwg,a{,y) = (wl _|_w2)ya

3. Now solving: )
max py — (w1 +wa)ye

We get:

[e]3

— @ = — f— PR
va Wy + Wo Y w1 + Wa



