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Chapter 2

The Solow Growth Model (and a look

ahead)

2.1 Centralized Dictatorial Allocations

• In this section, we start the analysis of the Solow model by pretending that there

is a benevolent dictator, or social planner, that chooses the static and intertemporal

allocation of resources and dictates that allocations to the households of the economy

We will later show that the allocations that prevail in a decentralized competitive

market environment coincide with the allocations dictated by the social planner.

2.1.1 The Economy, the Households and the Social Planner

• Time is discrete, t ∈ {0, 1, 2, ...}. You can think of the period as a year, as a generation,
or as any other arbitrary length of time.

• The economy is an isolated island. Many households live in this island. There are
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no markets and production is centralized. There is a benevolent dictator, or social

planner, who governs all economic and social affairs.

• There is one good, which is produced with two factors of production, capital and labor,
and which can be either consumed in the same period, or invested as capital for the

next period.

• Households are each endowed with one unit of labor, which they supply inelasticly to
the social planner. The social planner uses the entire labor force together with the

accumulated aggregate capital stock to produce the one good of the economy.

• In each period, the social planner saves a constant fraction s ∈ (0, 1) of contemporane-
ous output, to be added to the economy’s capital stock, and distributes the remaining

fraction uniformly across the households of the economy.

• In what follows, we let Lt denote the number of households (and the size of the labor

force) in period t, Kt aggregate capital stock in the beginning of period t, Yt aggregate

output in period t, Ct aggregate consumption in period t, and It aggregate investment

in period t. The corresponding lower-case variables represent per-capita measures: kt =

Kt/Lt, yt = Yt/Lt, it = It/Lt, and ct = Ct/Lt.

2.1.2 Technology and Production

• The technology for producing the good is given by

Yt = F (Kt, Lt) (2.1)

where F : R2+ → R+ is a (stationary) production function. We assume that F is

continuous and (although not always necessary) twice differentiable.
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• We say that the technology is “neoclassical” if F satisfies the following properties

1. Constant returns to scale (CRS), or linear homogeneity:

F (µK, µL) = µF (K,L), ∀µ > 0.

2. Positive and diminishing marginal products:

FK(K,L) > 0, FL(K,L) > 0,

FKK(K,L) < 0, FLL(K,L) < 0.

where Fx ≡ ∂F/∂x and Fxz ≡ ∂2F/(∂x∂z) for x, z ∈ {K,L}.

3. Inada conditions:

lim
K→0

FK = lim
L→0

FL =∞,

lim
K→∞

FK = lim
L→∞

FL = 0.

• By implication, F satisfies

Y = F (K,L) = FK(K,L)K + FL(K,L)L

or equivalently

1 = εK + εL

where

εK ≡ ∂F

∂K

K

F
and εL ≡ ∂F

∂L

L

F

Also, FK and FL are homogeneous of degree zero, meaning that the marginal products

depend only on the ratio K/L.

And, FKL > 0, meaning that capital and labor are complementary.
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• Technology in intensive form: Let

y =
Y

L
and k =

K

L
.

Then, by CRS

y = f(k) (2.2)

where

f(k) ≡ F (k, 1).

By definition of f and the properties of F,

f(0) = 0,

f 0(k) > 0 > f 00(k)

lim
k→0

f 0(k) = ∞, lim
k→∞

f 0(k) = 0

Also,

FK(K,L) = f 0(k)

FL(K,L) = f(k)− f 0(k)k

• The intensive-form production function f and the marginal product of capital f 0 are

illustrated in Figure 1.

• Example: Cobb-Douglas technology

F (K,L) = KαL1−α

In this case,

εK = α, εL = 1− α

and

f(k) = kα.
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2.1.3 The Resource Constraint, and the Law of Motions for Cap-

ital and Labor

• Remember that there is a single good, which can be either consumed or invested. Of
course, the sum of aggregate consumption and aggregate investment can not exceed

aggregate output. That is, the social planner faces the following resource constraint :

Ct + It ≤ Yt (2.3)

Equivalently, in per-capita terms:

ct + it ≤ yt (2.4)

• Suppose that population growth is n ≥ 0 per period. The size of the labor force then
evolves over time as follows:

Lt = (1 + n)Lt−1 = (1 + n)tL0 (2.5)

We normalize L0 = 1.

• Suppose that existing capital depreciates over time at a fixed rate δ ∈ [0, 1]. The
capital stock in the beginning of next period is given by the non-depreciated part of

current-period capital, plus contemporaneous investment. That is, the law of motion

for capital is

Kt+1 = (1− δ)Kt + It. (2.6)

Equivalently, in per-capita terms:

(1 + n)kt+1 = (1− δ)kt + it
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We can approximately write the above as

kt+1 ≈ (1− δ − n)kt + it (2.7)

The sum δ + n can thus be interpreted as the “effective” depreciation rate of per-

capita capital. (Remark: This approximation becomes arbitrarily good as the economy

converges to its steady state. Also, it would be exact if time was continuous rather

than discrete.)

2.1.4 The Dynamics of Capital and Consumption

• In most of the growth models that we will examine in this class, the key of the analysis
will be to derive a dynamic system that characterizes the evolution of aggregate con-

sumption and capital in the economy; that is, a system of difference equations in Ct

and Kt (or ct and kt). This system is very simple in the case of the Solow model.

• Combining the law of motion for capital (2.6), the resource constraint (2.3), and the
technology (2.1), we derive the difference equation for the capital stock:

Kt+1 −Kt = F (Kt, Lt)− δKt − Ct (2.8)

That is, the change in the capital stock is given by aggregate output, minus capital

depreciation, minus aggregate consumption.

kt+1 = f(kt)− (δ + n)kt − ct.

• On the other hand, aggregate consumption is, by assumption, a fixed fraction (1− s)

of output:

Ct = (1− s)F (Kt, Lt) (2.9)
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• Similarly, in per-capita terms, (2.6), (2.4) and (2.2) give the dynamics of capitalwhereas
consumption is given by

ct = (1− s)f(kt).

• From this point and on, we will analyze the dynamics of the economy in per capita

terms only. Translating the results to aggregate terms is a straightforward exercise.

2.1.5 Feasible and “Optimal” Allocations

Definition 1 A feasible allocation is any sequence {ct, kt}∞t=0 that satisfies the resource con-
straint

kt+1 = f(kt) + (1− δ − n)kt − ct. (2.10)

Definition 2 An “optimal” centralized allocation is any feasible allocation that satisfies

ct = (1− s)f(kt). (2.11)

• In the Ramsey model, the optimal allocation will maximize social welfare. Here, the
“optimal” allocation satisfies the presumed rule-of-thump for the social planner.

2.1.6 The Policy Rule

• Combining (2.10) and (2.11), we derive the fundamental equation of the Solow model :

kt+1 − kt = sf(kt)− (δ + n)kt (2.12)

Note that the above defines kt+1 as a function of kt :
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Proposition 3 Given any initial point k0 > 0, the dynamics of the dictatorial economy are

given by the path {kt}∞t=0 such that

kt+1 = G(kt), (2.13)

for all t ≥ 0, where
G(k) ≡ sf(k) + (1− δ − n)k.

Equivalently, the growth rate of capital is given by

γt ≡
kt+1 − kt

kt
= γ(kt), (2.14)

where

γ(k) ≡ sφ(k)− (δ + n), φ(k) ≡ f(k)/k.

• Proof. (2.13) follows from (2.12) and rearranging gives (2.14). QED

• G corresponds to what we will call the policy rule in the Ramsey model. The dynamic

evolution of the economy is concisely represented by the path {kt}∞t=0 that satisfies
(2.12), or equivalently (2.13), for all t ≥ 0, with k0 historically given.

• The graph of G is illustrated in Figure 2.

2.1.7 Steady State

• A steady state of the economy is defined as any level k∗ such that, if the economy starts
with k0 = k∗, then kt = k∗ for all t ≥ 1. That is, a steady state is any fixed point k∗ of
(2.12) or (2.13). Equivalently, a steady state is any fixed point (c∗, k∗) of the system

(2.10)-(2.11).

16



Lecture Notes

• A trivial steady state is c = k = 0 : There is no capital, no output, and no consumption.

This would not be a steady state if f(0) > 0. We are interested for steady states at

which capital, output and consumption are all positive and finite. We can easily show:

Proposition 4 Suppose δ+n ∈ (0, 1) and s ∈ (0, 1). A steady state (c∗, k∗) ∈ (0,∞)2 for the
dictatorial economy exists and is unique. k∗ and y∗ increase with s and decrease with δ and

n, whereas c∗ is non-monotonic with s and decreases with δ and n. Finally, y∗/k∗ = (δ+n)/s.

• Proof. k∗ is a steady state if and only if it solves

0 = sf(k∗)− (δ + n)k∗,

Equivalently
y∗

k∗
= φ(k∗) =

δ + n

s
(2.15)

where

φ(k) ≡ f(k)

k
.

The function φ gives the output-to-capital ratio in the economy. The properties of

f imply that φ is continuous (and twice differentiable), decreasing, and satisfies the

Inada conditions at k = 0 and k =∞:

φ0(k) =
f 0(k)k − f(k)

k2
= −FL

k2
< 0,

φ(0) = f 0(0) =∞ and φ(∞) = f 0(∞) = 0,

where the latter follow from L’Hospital’s rule. This implies that equation (2.15) has a

solution if and only if δ+ n > 0 and s > 0. and the solution unique whenever it exists.

The steady state of the economy is thus unique and is given by

k∗ = φ−1
µ
δ + n

s

¶
.
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Since φ0 < 0, k∗ is a decreasing function of (δ+n)/s. On the other hand, consumption

is given by

c∗ = (1− s)f(k∗).

It follows that c∗ decreases with δ + n, but s has an ambiguous effect. QED

2.1.8 Transitional Dynamics

• The above characterized the (unique) steady state of the economy. Naturally, we are
interested to know whether the economy will converge to the steady state if it starts

away from it. Another way to ask the same question is whether the economy will

eventually return to the steady state after an exogenous shock perturbs the economy

and moves away from the steady state.

• The following uses the properties of G to establish that, in the Solow model, conver-

gence to the steady is always ensured and is monotonic:

Proposition 5 Given any initial k0 ∈ (0,∞), the dictatorial economy converges asymp-
totically to the steady state. The transition is monotonic. The growth rate is positive and

decreases over time towards zero if k0 < k∗; it is negative and increases over time towards

zero if k0 > k∗.

• Proof. From the properties of f, G0(k) = sf 0(k) + (1 − δ − n) > 0 and G00(k) =

sf 00(k) < 0. That is, G is strictly increasing and strictly concave. Moreover, G(0) = 0,

G0(0) = ∞, G(∞) = ∞, G0(∞) = (1 − δ − n) < 1. By definition of k∗, G(k) = k iff

k = k∗. It follows that G(k) > k for all k < k∗ and G(k) < k for all k > k∗. It follows

that kt < kt+1 < k∗ whenever kt ∈ (0, k∗) and therefore the sequence {kt}∞t=0 is strictly
increasing if k0 < k∗. By monotonicity, kt converges asymptotically to some k̂ ≤ k∗.
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By continuity of G, k̂ must satisfy k̂ = G(k̂), that is k̂ must be a fixed point of G.

But we already proved that G has a unique fixed point, which proves that k̂ = k∗.

A symmetric argument proves that, when k0 > k∗, {kt}∞t=0 is stricttly decreasing and
again converges asymptotically to k∗. Next, consider the growth rate of the capital

stock. This is given by

γt ≡
kt+1 − kt

kt
= sφ(kt)− (δ + n) ≡ γ(kt).

Note that γ(k) = 0 iff k = k∗, γ(k) > 0 iff k < k∗, and γ(k) < 0 iff k > k∗. Moreover,

by diminishing returns, γ0(k) = sφ0(k) < 0. It follows that γ(kt) < γ(kt+1) < γ(k∗) = 0

whenever kt ∈ (0, k∗) and γ(kt) > γ(kt+1) > γ(k∗) = 0 whenever kt ∈ (k∗,∞). This
proves that γt is positive and decreases towards zero if k0 < k∗ and it is negative and

increases towards zero if k0 > k∗. QED

• Figure 2 depicts G(k), the relation between kt and kt+1. The intersection of the graph
of G with the 45o line gives the steady-state capital stock k∗. The arrows represent the

path {kt}∞t= for a particular initial k0.

• Figure 3 depicts γ(k), the relation between kt and γt. The intersection of the graph of
γ with the 45o line gives the steady-state capital stock k∗. The negative slope reflects

what we call “conditional convergence.”

• Discuss local versus global stability: Because φ0(k∗) < 0, the system is locally sta-

ble. Because φ is globally decreasing, the system is globally stable and transition is

monotonic.
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2.2 Decentralized Market Allocations

• In the previous section, we characterized the centralized allocations dictated by a social
planner. We now characterize the allocations

2.2.1 Households

• Households are dynasties, living an infinite amount of time. We index households by
j ∈ [0, 1], having normalized L0 = 1. The number of heads in every household grow at

constant rate n ≥ 0. Therefore, the size of the population in period t is Lt = (1 + n)t

and the number of persons in each household in period t is also Lt.

• We write cjt , kjt , bjt , ijt for the per-head variables for household j.

• Each person in a household is endowed with one unit of labor in every period, which
he supplies inelasticly in a competitive labor market for the contemporaneous wage wt.

Household j is also endowed with initial capital kj0. Capital in household j accumulates

according to

(1 + n)kjt+1 = (1− δ)kjt + it,

which we approximate by

kjt+1 = (1− δ − n)kjt + it. (2.16)

Households rent the capital they own to firms in a competitive rental market for a

(gross) rental rate rt.

• The household may also hold stocks of some firms in the economy. Let πjt be the
dividends (firm profits) that household j receive in period t. As it will become clear

later on, it is without any loss of generality to assume that there is no trade of stocks.
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(This is because the value of firms stocks will be zero in equilibrium and thus the value

of any stock transactions will be also zero.) We thus assume that household j holds a

fixed fraction αj of the aggregate index of stocks in the economy, so that πjt = αjΠt,

where Πt are aggregate profits. Of course,
R
αjdj = 1.

• The household uses its income to finance either consumption or investment in new
capital:

cjt + ijt = yjt .

Total per-head income for household j in period t is simply

yjt = wt + rtk
j
t + πjt . (2.17)

Combining, we can write the budget constraint of household j in period t as

cjt + ijt = wt + rtk
j
t + πjt (2.18)

• Finally, the consumption and investment behavior of household is a simplistic linear
rule. They save fraction s and consume the rest:

cjt = (1− s)yjt and ijt = syit. (2.19)

2.2.2 Firms

• There is an arbitrary number Mt of firms in period t, indexed by m ∈ [0,Mt]. Firms

employ labor and rent capital in competitive labor and capital markets, have access

to the same neoclassical technology, and produce a homogeneous good that they sell

competitively to the households in the economy.
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• Let Km
t and L

m
t denote the amount of capital and labor that firm m employs in period

t. Then, the profits of that firm in period t are given by

Πm
t = F (Km

t , L
m
t )− rtK

m
t − wtL

m
t .

• The firms seek to maximize profits. The FOCs for an interior solution require

FK(K
m
t , L

m
t ) = rt. (2.20)

FL(K
m
t , L

m
t ) = wt. (2.21)

• Remember that the marginal products are homogenous of degree zero; that is, they
depend only on the capital-labor ratio. In particular, FK is a decreasing function of

Km
t /L

m
t and FL is an increasing function of Km

t /L
m
t . Each of the above conditions thus

pins down a unique capital-labor ratio Km
t /L

m
t . For an interior solution to the firms’

problem to exist, it must be that rt and wt are consistent, that is, they imply the same

Km
t /L

m
t . This is the case if and only if there is some Xt ∈ (0,∞) such that

rt = f 0(Xt) (2.22)

wt = f(Xt)− f 0(Xt)Xt (2.23)

where f(k) ≡ F (k, 1); this follows from the properties FK(K,L) = f 0(K/L) and

FL(K,L) = f(K/L)− f 0(K/L) · (K/L), which we established earlier.

• If (2.22) and (2.23) are satisfied, the FOCs reduce to Km
t /L

m
t = Xt, or

Km
t = XtL

m
t . (2.24)

That is, the FOCs pin down the capital labor ratio for each firm (Km
t /L

m
t ), but not the

size of the firm (Lm
t ). Moreover, because all firms have access to the same technology,

they use exactly the same capital-labor ratio.
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• Besides, (2.22) and (2.23) imply

rtXt + wt = f(Xt). (2.25)

It follows that

rtK
m
t + wtL

m
t = (rtXt + wt)L

m
t = f(Xt)L

m
t = F (Km

t , L
m
t ),

and therefore

Πm
t = Lm

t [f(Xt)− rtXt − wt] = 0. (2.26)

That is, when (2.22) and (2.23) are satisfied, the maximal profits that any firm makes

are exactly zero, and these profits are attained for any firm size as long as the capital-

labor ratio is optimal. If instead (2.22) and (2.23) were violated, then either rtXt+wt <

f(Xt), in which case the firm could make infinite profits, or rtXt+wt > f(Xt), in which

case operating a firm of any positive size would generate strictly negative profits.

2.2.3 Market Clearing

• The capital market clears if and only ifZ Mt

0

Km
t dm =

Z 1

0

(1 + n)tkjtdj

Equivalently, Z Mt

0

Km
t dm = Kt (2.27)

where Kt ≡
R Lt
0

kjtdj is the aggregate capital stock in the economy.

• The labor market, on the other hand, clears if and only ifZ Mt

0

Lm
t dm =

Z 1

0

(1 + n)tdj
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Equivalently, Z Mt

0

Lm
t dm = Lt (2.28)

where Lt is the size of the labor force in the economy.

2.2.4 General Equilibrium: Definition

• The definition of a general equilibrium is more meaningful when households optimize

their behavior (maximize utility) rather than being automata (mechanically save a

constant fraction of income). Nonetheless, it is always important to have clear in mind

what is the definition of equilibrium in any model. For the decentralized version of the

Solow model, we let:

Definition 6 An equilibrium of the economy is an allocation {(kjt , cjt , ijt )j∈[0,1], (Km
t , L

m
t )m∈[0,Mt]}∞t=0,

a distribution of profits {(πjt )j∈[0,1]}, and a price path {rt, wt}∞t=0 such that
(i) Given {rt, wt}∞t=0 and {πjt}∞t=0, the path {kjt , cjt , ijt} is consistent with the behavior of

household j, for every j.

(ii) (Km
t , L

m
t ) maximizes firm profits, for every m and t.

(iii) The capital and labor markets clear in every period

(iv) Aggregate dividends equal aggregate profits.

2.2.5 General Equilibrium: Existence, Uniqueness, and Charac-

terization

• In the next, we characterize the decentralized equilibrium allocations:

Proposition 7 For any initial positions (kj0)j∈[0,1], an equilibrium exists. The allocation of

production across firms is indeterminate, but the equilibrium is unique as regards aggregate
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and household allocations. The capital-labor ratio in the economy is given by {kt}∞t=0 such
that

kt+1 = G(kt) (2.29)

for all t ≥ 0 and k0 =
R
kj0dj historically given, where G(k) ≡ sf(k)+(1−δ−n)k. Equilibrium

growth is given by

γt ≡
kt+1 − kt

kt
= γ(kt), (2.30)

where γ(k) ≡ sφ(k)− (δ + n), φ(k) ≡ f(k)/k. Finally, equilibrium prices are given by

rt = r(kt) ≡ f 0(kt), (2.31)

wt = w(kt) ≡ f(kt)− f 0(kt)kt, (2.32)

where r0(k) < 0 < w0(k).

• Proof. We first characterize the equilibrium, assuming it exists.

Using Km
t = XtL

m
t by (2.24), we can write the aggregate demand for capital asZ Mt

0

Km
t dm = Xt

Z Mt

0

Lm
t dm

From the labor market clearing condition (2.28),Z Mt

0

Lm
t dm = Lt.

Combining, we infer Z Mt

0

Km
t dm = XtLt,

and substituting in the capital market clearing condition (2.27), we conclude

XtLt = Kt,
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where Kt ≡
R Lt
0

kjtdj denotes the aggregate capital stock. Equivalently, letting kt ≡
Kt/Lt denote the capital-labor ratio in the economy, we have

Xt = kt. (2.33)

That is, all firms use the same capital-labor ratio as the aggregate of the economy.

Substituting (2.33) into (2.22) and (2.23) we infer that equilibrium prices are given by

rt = r(kt) ≡ f 0(kt) = FK(kt, 1)

wt = w(kt) ≡ f(kt)− f 0(kt)kt = FL(kt, 1)

Note that r0(k) = f 00(k) = FKK < 0 and w0(k) = −f 00(k)k = FLK > 0. That is, the

interest rate is a decreasing function of the capital-labor ratio and the wage rate is an

increasing function of the capital-labor ratio. The first properties reflects diminishing

returns, the second reflects the complementarity of capital and labor.

Adding up the budget constraints of the households, we get

Ct + It = rtKt + wtLt +

Z
πjtdj,

where Ct ≡
R
cjtdj and It ≡

R
ijtdj. Aggregate dividends must equal aggregate profits,R

πjtdj =
R
Πm
t dj. By (2.26), profits for each firm are zero. Therefore,

R
πjtdj = 0,

implying

Ct + It = Yt = rtKt + wtLt

Equivalently, in per-capita terms,

ct + it = yt = rtkt + wt.

From (2.25) and (2.33), or equivalently from (2.31) and (2.32),

rtkt + wt = yt = f(kt)
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We conclude that the household budgets imply

ct + it = f(kt),

which is simply the resource constraint of the economy.

Adding up the individual capital accumulation rules (2.16), we get the capital accu-

mulation rule for the aggregate of the economy. In per-capita terms,

kt+1 = (1− δ − n)kt + it

Adding up (2.19) across households, we similarly infer

it = syt = sf(kt).

Combining, we conclude

kt+1 = sf(kt) + (1− δ − n)kt = G(kt),

which is exactly the same as in the centralized allocation.

Finally, existence and uniqueness is now trivial. (2.29) maps any kt ∈ (0,∞) to a
unique kt+1 ∈ (0,∞). Similarly, (2.31) and (2.32) map any kt ∈ (0,∞) to unique
rt, wt ∈ (0,∞). Therefore, given any initial k0 =

R
kj0dj, there exist unique paths

{kt}∞t=0 and {rt, wt}∞t=0. Given {rt, wt}∞t=0, the allocation {kjt , cjt , ijt} for any household
j is then uniquely determined by (2.16), (2.17), and (2.19). Finally, any allocation

(Km
t , L

m
t )m∈[0,Mt] of production across firms in period t is consistent with equilibrium

as long as Km
t = ktL

m
t . QED

• An immediate implication is that the decentralized market economy and the centralized
dictatorial economy are isomorphic. This follows directly from the fact that G is the

same under both regimes, provided of course that (s, δ, n, f) are the same:
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Proposition 8 The aggregate and per-capita allocations in the competitive market economy

coincide with those in the dictatorial economy.

• Given this isomorphism, we can immediately translate the steady state and the tran-
sitional dynamics of the centralized plan to the steady state and the transitional dy-

namics of the decentralized market allocations:

Corollary 9 Suppose δ + n ∈ (0, 1) and s ∈ (0, 1). A steady state (c∗, k∗) ∈ (0,∞)2 for the
competitive economy exists and is unique, and coincides with that of the social planner. k∗

and y∗ increase with s and decrease with δ and n, whereas c∗ is non-monotonic with s and

decreases with δ and n. Finally, y∗/k∗ = (δ + n)/s.

Corollary 10 Given any initial k0 ∈ (0,∞), the competitive economy converges asymp-
totically to the steady state. The transition is monotonic. The equilibrium growth rate is

positive and decreases over time towards zero if k0 < k∗; it is negative and increases over

time towards zero if k0 > k∗.

2.3 Shocks and Policies

• The Solow model can be interpreted also as a primitive Real Business Cycle (RBC)
model. We can use the model to predict the response of the economy to productivity

or taste shocks, or to shocks in government policies.

2.3.1 Productivity (or Taste) Shocks

• Suppose output is given by
Yt = F (Kt, Lt)
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or in intensive form

yt = Atf(kt)

where At denotes total factor productivity.

• Consider a permanent negative shock in productivity. The G(k) and γ(k) functions

shift down, as illustrated in Figure 4. The new steady state is lower. The economy

transits slowly from the old steady state to the new.

• If instead the shock is transitory, the shift in G(k) and γ(k) is also temporary. Initially,
capital and output fall towards the low steady state. But when productivity reverts

to the initial level, capital and output start to grow back towards the old high steady

state.

• The effect of a prodictivity shock on kt and yt is illustrated in Figure 5. The solid lines
correspond to a transitory shock, whereas the dashed lines correspond to a permanent

shock.

• Taste shocks: Consider a temporary fall in the saving rate s. The γ(k) function shifts
down for a while, and then return to its initial position. What are the transitional

dynamics? What if instead the fall in s is permanent?

2.3.2 Unproductive Government Spending

• Let us now introduce a government in the competitive market economy. The govern-
ment spends resources without contributing to production or capital accumulation.

• The resource constraint of the economy now becomes

ct + gt + it = yt = f(kt),
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where gt denotes government consumption. It follows that the dynamics of capital are

given by

kt+1 − kt = f(kt)− (δ + n)kt − ct − gt

• Government spending is financed with proportional income taxation, at rate τ ≥ 0.
The government thus absorbs a fraction τ of aggregate output:

gt = τyt.

• Disposable income for the representative household is (1−τ )yt.We continue to assume
that consumption and investment absorb fractions 1− s and s of disposable income:

ct = (1− s)(yt − gt),

it = (1− s)(yt − gt).

• Combining the above, we conclude that the dynamics of capital are now given by

γt =
kt+1 − kt

kt
= s(1− τ)φ(kt)− (δ + n).

where φ(k) ≡ f(k)/k. Given s and kt, the growth rate γt decreases with τ .

• A steady state exists for any τ ∈ [0, 1) and is given by

k∗ = φ−1
µ

δ + n

s(1− τ )

¶
.

Given s, k∗ decreases with τ .

• Policy Shocks: Consider a temporary shock in government consumption. What are the
transitional dynamics?
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2.3.3 Productive Government Spending

• Suppose now that production is given by

yt = f(kt, gt) = kαt g
β
t ,

where α > 0, β > 0, and α + β < 1. Government spending can thus be interpreted as

infrastructure or other productive services. The resource constraint is

ct + gt + it = yt = f(kt, gt).

• We assume again that government spending is financed with proportional income tax-
ation at rate τ , and that private consumption and investment are fractions 1− s and

s of disposable household income:

gt = τyt.

ct = (1− s)(yt − gt)

it = s(yt − gt)

• Substituting gt = τyt into yt = kαt g
β
t and solving for yt, we infer

yt = k
α

1−β
t τ

β
1−β ≡ kat τ

b

where a ≡ α/(1−β) and b ≡ β/(1−β). Note that a > α, reflecting the complementarity

between government spending and capital.

• We conclude that the growth rate is given by

γt =
kt+1 − kt

kt
= s(1− τ)τ bka−1t − (δ + n).

The steady state is

k∗ =
µ
s(1− τ )τ b

δ + n

¶1/(1−a)
.
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• Consider the rate τ that maximizes either k∗, or γt for any given kt. This is given by

d

dτ
[(1− τ)τ b] = 0⇔

bτ b−1 − (1 + b)τ b = 0⇔
τ = b/(1 + b) = β.

That is, the growth-maximizing τ equals the elasticity of production with respect to

government services. The more productive government services are, the higher their

“optimal” provision.

2.4 Continuous Time and Conditional Convergence

2.4.1 The Solow Model in Continuous Time

• Recall that the basic growth equation in the discrete-time Solow model is

kt+1 − kt
kt

= γ(kt) ≡ sφ(kt)− (δ + n).

We would expect a similar condition to hold under continuous time. We verify this

below.

• The resource constraint of the economy is

C + I = Y = F (K,L).

In per-capita terms,

c+ i = y = f(k).
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• Population growth is now given by
L̇

L
= n

and the law of motion for aggregate capital is

K̇ = I − δK

• Let k ≡ K/L. Then,
k̇

k
=

K̇

K
− L̇

L
.

Substituting from the above, we infer

k̇ = i− (δ + n)k.

Combining this with

i = sy = sf(k),

we conclude

k̇ = sf(k)− (δ + n)k.

• Equivalently, the growth rate of the economy is given by
k̇

k
= γ(k) ≡ sφ(k)− (δ + n). (2.34)

The function γ(k) thus gives the growth rate of the economy in the Solow model,

whether time is discrete or continuous.

2.4.2 Log-linearization and the Convergence Rate

• Define z ≡ ln k − ln k∗. We can rewrite the growth equation (2.34) as

ż = Γ(z),
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where

Γ(z) ≡ γ(k∗ez) ≡ sφ(k∗ez)− (δ + n)

Note that Γ(z) is defined for all z ∈ R. By definition of k∗, Γ(0) = sφ(k∗)− (δ + n) =

0. Similarly, Γ(z) > 0 for all z < 0 and Γ(z) < 0 for all z > 0. Finally, Γ0(z) =

sφ0(k∗ez)k∗ez < 0 for all z ∈ R.

• We next (log)linearize ż = Γ(z) around z = 0 :

ż = Γ(0) + Γ0(0) · z

or equivalently

ż = λz

where we substituted Γ(0) = 0 and let λ ≡ Γ0(0).

• Straightforward algebra gives

Γ0(z) = sφ0(k∗ez)k∗ez < 0

φ0(k) =
f 0(k)k − f(k)

k2
= −

·
1− f 0(k)k

f(k)

¸
f(k)

k2

sf(k∗) = (δ + n)k∗

We infer

Γ0(0) = −(1− εK)(δ + n) < 0

where εK ≡ FKK/F = f 0(k)k/f(k) is the elasticity of production with respect to

capital, evaluated at the steady-state k.

• We conclude that
k̇

k
= λ ln

µ
k

k∗

¶
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where

λ = −(1− εK)(δ + n) < 0

The quantity −λ is called the convergence rate.

• In the Cobb-Douglas case, y = kα, the convergence rate is simply

−λ = (1− α)(δ + n),

where α is the income share of capital. Note that as λ → 0 as α → 1. That is,

convergence becomes slower and slower as the income share of capital becomes closer

and closer to 1. Indeed, if it were α = 1, the economy would a balanced growth path.

• Note that, around the steady state

ẏ

y
= εK · k̇

k

and
y

y∗
= εK · k

k∗

It follows that
ẏ

y
= λ ln

µ
y

y∗

¶
Thus, −λ is the convergence rate for either capital or output.

• In the example with productive government spending, y = kαgβ = kα/(1−β)τβ/(1−β), we

get

−λ =
µ
1− α

1− β

¶
(δ + n)

The convergence rate thus decreases with β, the productivity of government services.

And λ→ 0 as β → 1− α.
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• Calibration: If α = 35%, n = 3% (= 1% population growth+2% exogenous technolog-

ical process), and δ = 5%, then −λ = 6%. This contradicts the data. But if α = 70%,
then −λ = 2.4%, which matches the data.

2.5 Cross-Country Differences and Conditional Con-

vergence.

2.5.1 Mankiw-Romer-Weil: Cross-Country Differences

• The Solow model implies that steady-state capital, productivity, and income are deter-
mined primarily by technology (f and δ), the national saving rate (s), and population

growth (n).

• Suppose that countries share the same technology in the long run, but differ in terms of
saving behavior and fertility rates. If the Solowmodel is correct, observed cross-country

income and productivity differences should be “explained” by observed cross-country

differences in s and n,

• Mankiw, Romer and Weil tests this hypothesis against the data. In it’s simple form,
the Solow model fails to predict the large cross-country dispersion of income and pro-

ductivity levels.

• Mankiw, Romer and Weil then consider an extension of the Solow model, that includes
two types of capital, physical capital (k) and human capital (h). Output is given by

y = kαhβ,
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where α > 0, β > 0, and α + β < 1. The dynamics of capital accumulation are now

given by

k̇ = sky − (δ + n)k

ḣ = shy − (δ + n)h

where sk and sh are the investment rates in physical capital and human capital, re-

spectively. The steady-state levels of k, h, and y then depend on both sk and sh, as

well as δ and n.

• Proxying sh by education attainment levels in each country, Mankiw, Romer and Weil
find that the Solow model extended for human capital does a pretty good job in “ex-

plaining” the cross-country dispersion of output and productivity levels.

2.5.2 Barro: Conditional Convergence

• Recall the log-linearization of the dynamics around the steady state:

ẏ

y
= λ ln

y

y∗
.

A similar relation will hold true in the neoclassical growth model a la Ramsey-Cass-

Koopmans. λ < 0 reflects local diminishing returns. Such local diminishing returns

occur even in endogenous-growth models. The above thus extends well beyond the

simple Solow model.

• Rewrite the above as
∆ ln y = λ ln y − λ ln y∗
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Next, let us proxy the steady state output by a set of country-specific controls X,

which include s, δ, n, τ etc. That is, let

−λ ln y∗ ≈ β 0X.

We conclude

∆ ln y = λ ln y + β0X + error

• The above represents a typical “Barro-like” conditional-convergence regression: We
use cross-country data to estimate λ (the convergence rate), together with β (the

effects of the saving rate, education, population growth, policies, etc.) The estimated

convergence rate is about 2% per year.

• Discuss the effects of the other variables (X).

2.6 Miscellaneous

2.6.1 The Golden Rule and Dynamic Inefficiency

• The Golden Rule: Consumption at the steady state is given by

c∗ = (1− s)f(k∗) =

= f(k∗)− (δ + n)k∗

Suppose the social planner chooses s so as to maximize c∗. Since k∗ is a monotonic

function of s, this is equivalent to choosing k∗ so as to maximize c∗. Note that

c∗ = f(k∗)− (δ + n)k∗
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is strictly concave in k∗. The FOC is thus both necessary and sufficient. c∗ is thus

maximized if and only if k∗ = kgold, where kgold solves

f 0(kgold)− δ = n.

Equivalently, s = sgold, where sgold solves

sgold · φ (kgold) = (δ + n)

The above is called the “golden rule” for savings, after Phelps.

• Dynamic Inefficiency: If s > sgold (equivalently, k∗ > kgold), the economy is dynami-

cally inefficient: If the saving rate is lowered to s = sgold for all t, then consumption in

all periods will be higher!

• On the other hand, if s < sgold (equivalently, k∗ > kgold), then raising s towards sgold

will increase consumption in the long run, but at the cost of lower consumption in the

short run. Whether such a trade-off between short-run and long-run consumption is

desirable will depend on how the social planner weight the short run versus the long

run.

• The Modified Golden Rule: In the Ramsey model, this trade-off will be resolved when
k∗ satisfies the

f 0(k∗)− δ = n+ ρ,

where ρ > 0 measures impatience (ρ will be called “the discount rate”). The above is

called the “modified golden rule.” Naturally, the distance between the Ramsey-optimal

k∗ and the golden-rule kgold increases with ρ.
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• Abel et. al.: Note that the golden rule can be restated as

r − δ =
Ẏ

Y
.

Dynamic inefficiency occurs when r−δ < Ẏ /Y, dynamic efficiency is ensured if r−δ >
Ẏ /Y. Abel et al. use this relation to argue that, in the data, there is no evidence of

dynamic inefficiency.

• Bubbles: If the economy is dynamically inefficient, there is room for bubbles.

2.6.2 Poverty Traps, Cycles, etc.

• The assumptions we have imposed on savings and technology implied that G is in-

creasing and concave, so that there is a unique and globally stable steady state. More

generally, however, G could be non-concave or even non-monotonic. Such “patholo-

gies” can arise, for example, when the technology is non-convex, as in the case of locally

increasing returns, or when saving rates are highly sensitive to the level of output, as

in some OLG models.

• Figure 6 illustrates an example of a non-concave G. There are now multiple steady
states. The two extreme ones are (locally) stable, the intermediate is unstable versus

stable ones. The lower of the stable steady states represents a poverty trap.

• Figure 7 illustrates an example of a non-monotonic G. We can now have oscillating
dynamics, or even perpetual endogenous cycles.
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2.6.3 Introducing Endogenous Growth

• What ensures that the growth rate asymptotes to zero in the Solow model (and the
Ramsey model as well) is the vanishing marginal product of capital, that is, the Inada

condition limk→∞ f 0(k) = 0.

• Continue to assume that f 00(k) < 0, so that γ 0(k) < 0, but assume now that limk→∞ f 0(k) =

A > 0. This implies also limk→∞ φ(k) = A. Then, as k →∞,

γt ≡
kt+1 − kt

kt
→ sA− (n+ δ)

• If sA < (n+δ), then it is like before: The economy converges to k∗ such that γ(k∗) = 0.

But if sA > (n + x + δ), then the economy exhibits deminishing but not vanishing

growth: γt falls with t, but γt → sA− (n+ δ) > 0 as t→∞.

• Jones and Manuelli consider such a general convex technology: e.g., f(k) = Bkα+Ak.

We then get both transitional dynamics in the short run and perpetual growth in the

long run.

• In case that f(k) = Ak, the economy follows a balanced-growth path from the very

beginning.

• We will later “endogenize” A in terms of externalities, R&D, policies, institutions,

markets, etc.

• For example, Romer/Lucas: If we have human capital or spillover effects,

y = Akαh1−α

and h = k, then we get y = Ak.
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• Reconcile conditional convergence with endogenous growth. Think of ln k − ln k∗ as a
detrended measure of the steady-state allocation of resources (human versus physical

capital, specialization pattern.); or as a measure of distance from technology frontier;

etc.
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