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The Plan for this Week
 

Traditional topic to cover after neoclassical consumer theory is
 
neoclassical producer theory:
 
theory of profit-maximizing production choices by a firm.
 

These theories are extremely similar.
 

Plan: 

�	 Super-fast treatment of neoclassical producer theory. 
�	 Spend time covering critical modern tool for economic
 
analysis: monotone comparative statics.
 

�	 Illustrate MCS with applications to some modern results in 
producer theory. 
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Neoclassical Producer Theory in One Sentence
 

“Producers are just like consumers, but they maximize profit 
instead of utility.” 

We expand on this just slightly, and show how main results of 
producer theory follow from results from consumer theory. 
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The Profit Maximization Problem (PMP) 
Choose production plan y ∈ Rn from production possibilities 
set Y ⊆ Rn to maximize profit p · y : 

max p · y 
y ∈Y 

Some prices can be negative. 
Lets us model inputs and outpus symmetrically. 

Inputs have negative prices (firm pays to use them). 
Outputs have positive prices (firm makes money by producing). 

Neoclassical firm is price taker. 
No market power. 
Study of firms with market power is a topic in industrial 
organization. 

Firm’s objective is profit maximization. 
In reality, firm is organization composed of individuals with 
different goals. 
Study of internal behavior and organization of firms is topic in 
organizational economics. 

I

I

I

I
I

I

I
I

I4



The PMP and the EMP 
For our purposes, producer theory leaves everything interesting 
about firm behavior to other areas of economics, and reduces 
firm’s problem to something isomorphic to consumer’s expenditure 
minimization problem. 

PMP is
 
max p · y .
 
y ∈Y 

Letting S = {x ∈ Rn : u (x) ≥ u}, EMP is
 

min p · x .
 
x ∈S 

Up to fiipping a sign, PMP the same as EMP. 

EMP: consumer chooses bundle of goods x to minimize
 
expenditure, subject to x lying in set S .
 

PMP: firm chooses bundle of goods y to minimize net expenditure 
(maximize net profit), subject to y lying in set Y . 
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The PMP and the EMP
 

Solution to EMP: Hicksian demand h (p).
 
Value function for EMP: expenditure function e (p).
 
(omitting u because we hold it fixed)
 

Solution to PMP: optimal production plan y (p).
 
Value function for EMP: profit function π (p).
 

Our treatment of producer theory consists of recalling facts about
 
Hicksian demand and expenditure function, and translating into
 
language of optimal production plan and profit function.
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Properties of Hicksian Demand/Optimal Production Plans 

Theorem 
Hicksian demand satisfies: 

1.	 Homogeneity of degree 0: for all λ > 0, h (λp) = h (p). 

2.	 Convexity: if S is convex (i.e., if preferences are convex), then 
h (p) is a convex set. 

3.	 Law of demand: for every p, pi ∈ Rn, x ∈ h (p), and
 
x i ∈ h (pi), we have (pi − p) (x i − x) ≤ 0.
 

Theorem 
Optimal production plans satisfy: 

1.	 Homogeneity of degree 0: for all λ > 0, y (λp) = y (p). 

2.	 Convexity: if Y is convex, then y (p) is a convex set. 

3.	 Law of supply: for every p, pi ∈ Rn, y ∈ y (p), and
 
y i ∈ y (pi), we have (pi − p) (y i − y ) ≥ 0.
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Properties of Expenditure Function/Profit Function 
Theorem 
The expenditure function satisfies: 

1. Homogeneity of degree 1: for all λ > 0, e (λp) = λe (p). 

2. Monotonicity: e is non-decreasing in p. 

3. Concavity: e is concave in p. 

4. Shephard’s lemma: under mild conditions (see Lectures 2—3), 
∂e is differentiable, and ∂pi 
e (p) = hi (p). 

Theorem 
The profit function satisfies: 

1. Homogeneity of degree 1: for all λ > 0, π (λp) = λπ (p). 

2. Monotonicity: π is non-decreasing in p. 

3. Convexity: π is convex in p. 

4. Hotelling’s lemma: under mild conditions, π is differentiable, 
∂and ∂pi 

π (p) = yi (p). 
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Monotone Comparative Statics: Motivation
 

Comparative statics are statements about how solution to a
 
problem changes with parameters.
 

Core of most applied economic analysis.
 

Last twenty years or so:
 
revolution in how comparative statics are done in economics.
 

Traditional approach:
 
differentiate FOC using implicit function theorem.
 

New approach:
 
monotone comparative statics.
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Example: Traditional Approach
 

Consider problem: 

max b (x , θ) − c (x) 
x ∈X 

x is choice variable 

θ is parameter 

b (x , θ) is benefit from choosing x given parameter θ 

c is cost of choosing x 
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Example: Traditional Approach
 

max b (x , θ) − c (x) 
x ∈X 

If X ⊆ R and b and c are differentiable, FOC is 

bx (x ∗ (θ) , θ) = c i (x ∗ (θ)) . 

If b and c are twice continuously differentiable and 
ii (xbxx (x ∗ (θ) , θ)  = c ∗ (θ)), implicit function theorem implies 

that solution x ∗ (θ) is continuously differentiable, with derivative 

d bx θ (x ∗ (θ) , θ)x ∗ (θ) = .
dθ c ii (x ∗ (θ)) − bxx (x ∗ (θ) , θ) 

If c is convex, b is concave in x , and bx θ > 0, can conclude that
 
x ∗ (θ) is (locally) increasing in θ.
 
Intuition: FOC sets marginal benefit equal to marginal cost.
 
If bx θ > 0 and θ increases, then if b is concave in x and c is
 
convex, x must increase to keep the FOC satisfied.
 

11



What’s Wrong with This Picture?
 

Unnecessary assumptions: as we’ll see, solution(s) are increasing 
in θ even if b is not concave, c is not convex, b and c are not 
differentiable, and choice variable is not continuous or 
real-valued. 

Wrong intuition: Intuition coming from the FOC involves
 
concavity of b and convexity of c .
 
This can’t be the right intuition.
 

We’ll see that what’s really needed is an ordinal condition on
 
b– the single-crossing property– which is a more meaningful
 
version of the assumption bx θ > 0.
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Why Learn Monotone Comparative Statics?
 

Three reasons: 

1.	 Generality: Cut unnecessary convexity and differentiability 
assumptions. 

2.	 Analytical power: Often, can’t assume convexity and
 
differentiability.
 
(Traditional approach doesn’t work.)
 

3.	 Understanding: By focusing on essential assumptions, help 
to understand workings of economic models. 
(Don’t get confused about what drives what.) 
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Why Learn Monotone Comparative Statics? 

Fourth reason: need to understand them to read other people’s 
papers. 

Costinot, A. “An Elementary Theory of Comparative
 
Advantage.” Econometrica, 2009. [International]
 

Acemoglu, D. “When Does Labor Scarcity Encourage
 
Innovation?” Journal of Political Economy, 2010.
 
[Growth/Innovation]
 

Kircher, P. and J. Eeckhout. “Sorting and Decentralized Price
 
Competition.” Econometrica, 2010. [Labor]
 

Segal, I. and M. Whinston. “Property Rights.” Chapter for
 
Handbook of Organizational Economics, 2011.
 
[Organizational Econ]
 

Acemoglu, D. and A. Wolitzky. “The Economics of Labor
 
Coercion.” Econometrica, 2011. [Political Economy]
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MCS with 1 Choice Variable and 1 Parameter
 

Start with simple case: X ⊆ R, Θ ⊆ R. 

Interested in set of solutions X ∗ (θ) to optimization problem 

max f (x , θ) 
x ∈X 

Under what conditions on f is X ∗ (θ) increasing in θ? 
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The Strong Set Order 
What does it mean for set of solutions to be increasing? 

Relevant order on sets: strong set order. 

Definition 
A set A ⊆ R is greater than a set B ⊆ R in the strong set order 
(SSO) if, for any a ∈ A and b ∈ B, 

max {a, b} ∈ A, and 

min {a, b} ∈ B. 

  
θi iX ∗ (θ) greater than X ∗ if, whenever x is solution at θ and x

is solution at θi, either 

1. x ≥ x i, or 
2. both x and x i are solutions for both parameters. 16



Increasing Differences
 

Simple condition on f that guarantees that X ∗ (θ) is increasing (in 
SSO): increasing differences. 

Definition 
A function f : R × R → R has increasing differences in (x , θ) if, 
whenever xH ≥ xL and θH ≥ θL, we have         

H L H Lf x , θH − f x , θH ≥ f x , θL − f x , θL . 

Return to choosing a higher value of x is non-decreasing in θ. 

Form of complementarity between x and θ. 
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Increasing Differences: Differential Version
 

Theorem 
If f is twice continuously differentiable, then f has increasing 
differences in (x , θ) iff 

∂2f (x , θ) ≥ 0 for all x ∈ X , θ ∈ Θ. 
∂x∂θ 

Increasing differences generalizes condition on cross-partial 
derivatives used to sign comparative statics in traditional approach. 
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Topkis’Monotonicity Theorem
 

Simplest MCS theorem: 

Theorem (Topkis) 
If f has increasing differences in (x , θ), then X ∗ (θ) is increasing in 
the strong set order. 
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Back to Example
 

max b (x , θ) − c (x) 
x ∈X 

If b has increasing differences in (x , θ), then X ∗ (θ) is increasing in 
the strong set order. 

No assumptions about convexity or differentiability of anything. 
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Necessity
 

Want to find minimal assumptions for given comparative statics 
result to hold. 

Is increasing differences minimal assumption?
 

No: increasing differences is cardinal property, but property that
 
X ∗ (θ) is increasing is ordinal.
 

What’s ordinal version of increasing differences? 
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Single-Crossing 

Definition 
A function f : X × Θ → R is single-crossing in (x , θ) if, 
whenever xH ≥ xL and θH ≥ θL, we have 

H L H Lf x , θL ≥ f x , θL =⇒ f x , θH ≥ f x , θH 

and 

H L H Lf x , θL > f x , θL =⇒ f x , θH > f x , θH . 

Whenever choosing a higher x is better at a low value of θ, 
it’s also better at a high value of θ. 

Increasing differences implies single-crossing, but not vice versa. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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Milgrom-Shannon Monotonicity Theorem
 

Theorem (Milgrom and Shannon) 
If f is single-crossing in (x , θ), then X ∗ (θ) is increasing in the
 
strong set order.
 
Conversely, if X ∗ (θ) is increasing in the strong set order for every
 
choice set X ⊆ R, then f is single-crossing in (x , θ).
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Strictly Increasing Selections 
A stronger set order: for θ < θi, every x ∈ X ∗ (θ) is strictly less
 
than every x i ∈ X ∗ θi .
 
(Every selection is strictly increasing.)
 

When is every selection strictly increasing?
 

Strictly increasing differences: whenever xH > xL and θH > θL , 
we have 

H L H Lf x , θH − f x , θH > f x , θL − f x , θL . 

Theorem (Edlin and Shannon) 
Suppose f is continuously differentiable in x and has strictly 
increasing differences in (x , θ). 

∗Then, for all θ < θi, x ∈ X ∗ (θ) ∩ int X, and x∗i ∈ X ∗ θi , we 
have x∗ < x∗i . 

( )

( ) ( ) ( ) ( )

( )
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MCS with n Choice Variables and m Parameters
 

Previous theorems generalize to X ⊆ Rn and Θ ⊆ Rm . 

Two main issues in generalization: 

1.	 What’s “max” or “min” of two vectors? 

2.	 Need complementarity within components of x , not just 
between x and θ. 

Once clear these up, analysis same as in 1-dimensional case. 
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Meet and Join 
Relevant notion of min and max are component-wise min and 
max, also called meet and join: 

x ∧ y = (min {x1, y1} , . . . , min {xn, yn }) 
x ∨ y = (max {x1, y1} , . . . , max {xn, yn }) 

Definition 
A set A ⊆ Rn is greater than a set B ⊆ Rn in the strong set 
order if, for any a ∈ A and b ∈ B, 

a ∨ b ∈ A, and 

a ∧ b ∈ B. 

A lattice is a set X ⊆ Rn such that x ∧ y ∈ X and x ∨ y ∈ X for
 
all x , y ∈ X .
 
Ex. A product set X = X1 × . . . Xn is a lattice.
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Increasing Differences 

Definition of increasing differences in (x , θ) same as before: 
H ≥ xL , θH ≥ θLx =⇒ 

H L H Lf x , θH − f x , θH ≥ f x , θL − f x , θL 

(Note: x and θ are vectors. What does xH ≥ xL mean?) 

Increasing differences in (x , θ) no longer enough to guarantee 
X ∗ (θ) increasing. 

Issue: what if increase in θ1 pushes x1 and x2 up, but increase in x1 
pushes x2 down? 

Need complementarity within components of x , not just between x
 
and θ.
 

This is called supermodularity of f in x .
 

( ) ( ) ( ) ( )
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Supermodularity
 

Definition 
A function f : X × Θ → R is supermodular in x if, for all 
x , y ∈ X and θ ∈ Θ, we have 

f (x ∨ y , θ) − f (x , θ) ≥ f (y , θ) − f (x ∧ y , θ) . 
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Differential Versions
 

Theorem 
If f : Rn × Rm → R is twice continuously differentiable, 
then f has increasing differences in (x , θ) iff 

∂2f (x , θ) ≥ 0 for all x ∈ X , θ ∈ Θ, i ∈ {1, . . . , n} , j ∈ {1, . . . , m} ,
∂xi ∂θj 

and f is supermodular in x iff 

∂2f (x , θ) ≥ 0 for all x ∈ X , θ ∈ Θ, i = j ∈ {1, . . . , n} . 
∂xi ∂xj 

6=
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Topkis’Theorem
 

Theorem 
If X ⊆ Rn is a lattice, Θ ⊆ Rm, and f : X × Θ → R has 
increasing differences in (x , θ) and is supermodular in x, then 
X ∗ (θ) is increasing in the strong set order. 

There are also multidimensional versions of the Milgrom-Shannon 
and Edlin-Shannon theorems. 
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Application 1: Comparative Statics of Input Utilization 
Suppose firm has production function f : Rn → R, output price p, 
input price vector q: 

max pf (y ) − q · y 
y ∈Rn 

+ 

Assume f non-decreasing and supermodular. 

f non-decreasing =⇒ objective has increasing differences in 
(y , (p, −q)). 

Theorem 
Suppose a competitive firm’s production function is increasing and 
supermodular in its inputs. If the price of the firm’s output 
increases and/or the price of any of its inputs decreases, then the 
firm increases the usage of all of its inputs. 
(Formally, Y ∗ (p, q) increases in the strong set order.) 31



Application 1.5: The Law of Supply
 

max pf (y ) − q · y 
y ∈Rn 

+ 

Can use Topkis’theorem to give alternative proof of law of supply, 
without any assumptions on f . 

Let 

x = f (y ) 

c (x) = min 
y ∈Rn 

+ :f (y )≥x 
q · y 

Rewrite problem as 
max 
x ∈R 

px − c (x) 

Problem has increasing differences in (x , p), so x ∗ (p) increasing in
 
strong set order.
 
(And every selection from x ∗ (p) is increasing: see pset.)
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Application 2: The LeChatelier Principle
 

“Firms react more to input price changes in the long-run than the 
short-run.” 

Suppose inputs are labor and capital, and capital is fixed in short 
run. 

Seems reasonable that if price of labor changes, firm only adjusts 
labor slightly in short run, stuck with its old capital usage. 

In long run, will adjust labor more, once can choose “right” capital 
usage. 

We give example that shows LeChatelier Principle doesn’t always 
apply, and then use Tokpis to formulate rigorous version of the 
principle. 
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Example
 

Firm can produce $10 of output by using either 

1.	 2 units of L. 

2.	 1 unit each of L and K . 
Can also shut down and produce nothing. 

Initial prices: $2 per unit of L, $3 per unit of K . 

Firm produces using 2 units of L. 
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Example (cnt.)
 

Suppose price of L rises to $6, K fixed in short run.
 

In short run, firm shuts down.
 

In long run, firm produces using 1 unit each of L and K .
 

In short run, demand for L drops from 2 to 0.
 
In long run, goes back up to 1. 
LeChatelier principle fails. 
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Example (cnt.) 

What went wrong? 

1 unit of L is complementary with 1 unit of K , but 2 units of L are 
substitutable with 1 unit of K . 

L usage drops from 2 to 0 makes 1 unit of K more valuable 
(“substitution”), but when K usage rises from 0 to 1 this makes 1 
unit of L more valuable (“complementarity”). 

Suggests LeChatelier principle failed because inputs switched from 
being complements to substitues at different usage levels. 
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LeChatelier Revisited
 

Let 

x (y , θ) = arg max 
x ∈X 

f (x , y , θ) 

y (θ) = arg max 
y ∈Y 

f (x (y , θ) , y , θ) 

x (y , θ) is optimal “short-run” x (i.e., holding y fixed). 
y (θ) and x (y (θ) , θ) are optimal “long-run” choices. 

Theorem 
Suppose f : X × Y × Θ → R is supermodular, θ ≥ θi, and 
maximizers below are unique. Then 

x (y (θ) , θ) ≥ x y θi , θ ≥ x y θi , θi . 
( ( ) ) ( ( ) )
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LeChatelier Revisited
 

Corollary (LeChatelier Principle) 
Suppose a firm’s problem is 

max pf (K , L) − wL − rK 
K ,L∈R+ 

with either fKL ≥ 0 for all (K , L) or fKL ≤ 0 for all (K , L), and
 
suppose K is fixed in the short-run, while L is fiexible.
 
Then, if the wage w increases, the firm’s labor usage decreases,
 
and the decrease is larger in the long-run than in the short-run.
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