
Problem 1

Throughout this problem, note that conditional preference is well-de�ned, by P2.

(a) True. I show that B1 and B2 are null if and only if B1 [ B2 is null. The result

follows by induction on n.

Suppose that B1 and B2 are null. Then, for all f; g; h 2 F ,
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fhB1 2
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where the �rst � follows because B1 is null

�
and the

�
second � follows because B2 is null. By

de�nition, this implies that B1 [B2 is null.

Suppose that B1 [B2 are null. Then, for all f; g; h 2 F ,

h h
fhjB = fh h

1 jB1 gjB1[B2
� jB1 = gh .jB1[ BB2 j 1

By de�nition, this implies that B

�
1 is

�
null. Sim

�
ilarly

�
, B2 is null.

(b) True. Since C is �nite, there exists a �nite partition fD1; : : : ; Dng of S such that,

if s; s0 2 Di for some i 2 f1; : : : ; ng, then f (s) = f (s0) and g (s) = g (s0). Let C0 = ; and

let Ci =
Si
k=1D

k. For any i 2 f1; : : : ; ng, let fx be the constant act that always yields

consequence x � f (s) for some s 2 Di and let fy be the constant act that always yields
g gf f

consequence y � g (s) for some s 2 Di. If Di is null then (f ) j i iC j
x i % (fy) C

D Di trivially, and if
g g

j j
f f

Di is non-null then (fx)
j iC
i % (fy) j iC

i by P3. Hence, for every i 2 f1; : : : ; njD jD g,
g gf f

f g i = (fx)
j iC
i % (fy) j iC

i = f
g

jC jD jD jCi�1.

Therefore, f = f gjS % f
g = g.j;

(c) False. Let S = fs; tg, C = fx; x0; y; y0g. I denote an act f : S ! C by a pair (a; b),

with the interpretation that f (s) = a and f (t) = b. Consider the preference relation %
given by

(x; x) � (x; x0) � (x0; x) � (x0; x0) � (x; y)

� (x; y0) � (x0; y) � (x0; y0) � (y; x)

� (y; x0) � (y0; x) � (y0; x0) � (y; y)

� (y0; y) � (y; y0) � (y0; y0) .
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One can check that % satis�es P1-P3, but x � x0, 0 0 0 0
y � y0, fx;xs � fx;xt , and f

y;y
f g g ftg � f

y;y
f fs .g

Problem 2

(a) True. By P1-P5, %_ is a qualitative probability. In what follows, �property 2�and

�property 3�refer to properties 2 and 3 of qualitative probability, on page 85 in the lecture

notes.

I �rst prove the result in the special case where B1 \B2 = ;. Note that

A2 [ (A1n _B2) % B2 [ %_(A1nB2) (by A2 B2, A1 \ A2 = ;, and property 2)

= A1 [B2

= A1 [ (B2nA1)

%_ _B1 [ (B2nA1) (by A1%B1, B1 \B2 = ;, and property 2).

Since (A2 [ (A1nB2))\ (A1 \B2) = ; (by A1 \A2 = ;) and (B1 [ (B2nA1))\ (A1 \B2) = ;

(by B1 \B2 = ;), this implies that (using property 2 again)

A1 [ _A2 = (A2 [ (A1nB2)) [ (A1 \B2)% (B1 [ (B2nA1)) [ (A1 \B2) = B1 [B2.

Now suppose that B1 \B2 = ;. Note that _B2%B2nB1, because B1 \ %_B2 ; (by property

3), and therefore B2 = (B1 \ _B2) [ (B2nB1)%; [ (B2nB1) = (B2nB1) (by property 2).

Therefore, _A2%B2nB1, so the fact that the result holds in the special case where B1\B2 = ;
implies that A1 [ _A2%B1 [ (B2nB1) = B1 [B2.

(b) False. For the simplest counterexample, let _D = ;, in which case clearly A%B for

all A;B � S, and in particular ;%_ S, which contradicts property 3 of qualitative probability.
One can derive a similar contradiction for any null event , and one can show that %_D given

D is indeed a qualitative probability if D is non-null.

(c) True. Note that, by property 1 of a probability measure (also on page 85 in the

lecture notes), p (;) = 0 (because p (;) = p (; [ ;) = 2p (;)).

If A � S is null, then
x;x0 x0 � x0 0
fA = (fx) A (fx0)j jA = f

x;x ,;

2
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and therefore A�;_ . Hence, if p represents %_ , it follows that p (A) = p (;) = 0.
Conversely, if , then ; , so if represents %_p (A) = 0 p (A) = p ( ) p then A�;_ . Therefore,

fx;x
0 0
= (f )x � )x

0
(f = fx;x

0

A x A x0 A . But if A were not null, then P3 would imply that (fj j ; x)
x0

jA �
x0(fx0) A, so it must be that A is null.j

Problem 3

(Thanks to Hongkai Zhang, whose solution I used as a model for this)

As per Muhamet�s hint, each player has a well-de�ned continuation value at every history,

and she accepts her opponent�s proposal if and only if it gives her expected utility at least

as great as her continuation value. Therefore, at every history the proposer proposes a

Pareto e¢ cient allocation that gives her opponent exactly her continuation value. Due to

CARA utility and normally distributed payo¤s, the formula for e¢ cient risk-sharing derived

in lecture implies that player i�s time-t proposal is

T 1 t 1

t ��i
x

X� �

i = (xi;s + x ) + x + �
�i + � i

�i;s i;s t
� s=t s=0XT�1

X
t�1

xt
�i

i = (xi;s + x )� �i ��i
�i;s +

+
s=t

X
x ��i;s

s=0

� t

(noting that ��i = 1=�i
�i+��i 1=�

)
i+1=�

.
�i

It remains only to determine � t (and to verity that the �xed component of xti does indeed

depend on the history only through t). Note that � t is determined by the condition that

player�i is indi¤erent between the assets xt and xt+1i i at time t. Using certainty equivalents,�

this condition is 
T

�i X�1 t�1

CE�i (xi;s + x i;s) + x i;s � t
�i + ��i

� �
s=t

X
s=0

�
!

= CE�i

 
T t

�i X�1
(xi;s + x i;s) +

�i + ��i
�

s=t+1

X
x�i;s + � t+1

s=0

!
,

or equivalently

CE i

�
�i

(xi;t + x i;t)� � t
�
= CE i (x +�

�i + �
� � �i;t � t+1) . (1)

�i

Recall the following two facts:
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1. IfX and Y are iid random variables distributedN (0; �2), then k (X + Y ) is distributed

N (0; 2k2�2).

2. With CARA utility, if X is distributed N (�; 
2), then CE (X) = �� �
2

2
.

Using these facts, (1) may be rewritten as

�
� 2

� 2
i

�
2 �� � �i�

�
�

�i� � t = + � t+1,
i + ��i 2

or equivalently

� t =

 
1

2
�
� 2

�i
� i�

2 � t+1. (2)
�i + � i

� !
� �

�

Noting that �T = 0, (2) determines � t for all t 2 f0; : : : ; T � 1g (where i = 1 if T is odd,

and i = 2 if T is even). (2) can be written more concisely as follows:

� t =

 
1 �

�
�i

�2!
� �2 � if t is even

2 �i + � i
�i � t+1� ���

T +
� =

� t 1 1 �i�
t +

�i 2
i i

2 2 (� + � )2
�

i

�
(�� � )� if t is odd.

i �
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