14.126 Game theory Problem Set 5

The due date for this assignment is Monday May 7.

1. Consider a two-player Bayesian game in which the payoffs are as in the following table

$$\begin{array}{c|cc}
a & b \\
a & \theta, \theta & \theta - 1, 0 \\
b & 0, \theta - 1 & 0, 0
\end{array}$$

Each player i observes a signal $x_i = \theta + \varepsilon \eta_i$ where $\varepsilon \in (0,1)$ and θ_1 , η_1 and η_2 are normally and independently distributed random variables. Unlike in the example considered in the class, assume that players have differing beliefs about $(\theta_1, \eta_1, \eta_2)$. According to each player i, $\theta \sim N(\mu_i, 1)$, $x_i \sim N(0, 1)$, and $x_j \sim N(\beta, 1)$, where μ_1 and μ_2 may differ and β can be non-zero.

- (a) Compute the set of (interim) rationalizable actions for each type.
- (b) What happens to the set of rationalizable actions as $\varepsilon \to 0$?
- 2. Two firms, namely 1 and 2, are in a generalized Cournot competition. The goods they sell are "price-theory" complements, such as sugar and coffee. Simultaneously, each firm i produces q_i at total cost $C(q_i)$ and sells at market-clearing price $\theta P(q_i, q_j)$ where q_j is the supply of the other firm and θ is a demand parameter. (The firms are symmetric.)
 - (a) Find conditions on P and C and on the set of possible supplies under which there exists a weakly increasing strategy profile $q^*:(x_1,x_2)\mapsto (q_1^*(x_1),q_2^*(x_2))$ such that for any family of rationalizable strategies q_i^{ε} , $\lim_{\varepsilon\to 0}q_i^{\varepsilon}(x_i)=q_i^*(x_i)$ almost everywhere.
 - (b) Take $C(q_i) = cq_i$ for some c > 0 and $P(q_i, q_j) = q_i^{-\alpha} q_j^{\beta}$ for some $\alpha, \beta \in (0, 1)$ with $\alpha > \beta$. Compute q^* .

MIT OpenCourseWare http://ocw.mit.edu

14.126 Game Theory Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.