
14.126 Game Theory 
Final Exam 

You have 24 hours  from  the time you  pick  up  the exam  (i.e.  you need to return  
your solutions by the same time next day). You can use any existing written 
source, but you cannot discuss the content of this exam with others. Questions 
are equally weighted. Good Luck. 

1. This question tries to evaluate your understanding of the basic solution concepts. 

(a) (10 points) Consider a class of games Gθ = (N,S, u ( ; θ)), indexed  by  a  payoff·
parameter θ which comes from a compact metric space. Assume that player set N 
and strategy space S are finite. State broad conditions on u under which whenever 
Gθ∗ has a unique Nash equilibrium s∗ in pure strategies, θ∗ has a neighborhood η 
such that for each θ ∈ η, Gθ has a unique Nash equilibrium sθ in pure strategies 
and sθ = s∗. 
Answer: Assume that u is continuous in θ. Since  S is finite, u is also continuous 
in s. Then, as proved in the lecture slides, the correspondence PNE  of Nash 
equilibria in pure strategies is upper-hemicontinuous and non-empty. Since S is 
finite, this means that there exists a neighborhood η of θ∗ such that for each θ ∈ η, 
PNE (θ) ⊆ PNE (θ∗). Since  PNE (θ) =6 ∅ and PNE (θ∗) =  {s∗}, this implies 
that PNE (θ) =  {s∗} for each θ ∈ η. 

(b) (15 points) Compute the sequential equilibria of the following Bayesian game. 
There are two players and a payoff parameter θ ∈ {0, 1}. Player 1 knows the value 
of θ, and player 2 knows the value of a signal x ∈ {0, 1}. The joint distribution 
of θ and x is given by 

Pr ((θ, x) = (0, 0)) = Pr ((θ, x) = (1, 0)) = Pr ((θ, x) = (1, 1)) = 1/3. 

The payoffs and  actions are  as  in  the following  "tree":  

1 R 2 b 1 r11 RR 2 b2 b 1 r1 r

L a l 

3θ,3 

LL aa ll

3θ,3

2,2 0,2 3(1-θ),02,2 0,2 3(1-θ),0

Answer: The incomplete information game is as follows, where I also indicated 
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the necessary moves in any sequential equilibrium, the moves that are obvious: 

1 

L 

R 2 

a 

b 1 

l 

r 

2,2 0,2 0,0 

3,3 

1 

L 

R 2 

a 

b 1 

l 

r 

2,2 0,2 0,0 

3,3 

1 

L 

R 2 

a 

b 1 

l 

r 

3,0 

θ=x=1 

1/3 θ=1 
x=0 

1/3 

θ=x=0 

1/3 

μ 

1

L

R1

L

R 2

a

b 1

l

r

2,2 0,2 0,0

3,3

1

L

R1

L

R 2

a

b2

a

b 1

l

r

2,2 0,2 0,0

3,3

1

L

R1

L

R 2

a

b2

a

b 1

l

r

3,0

θ=x=1

1/3 θ=1
x=0

1/3

θ=x=0

1/3

μ

0,30,3

2,2 02,2 ,20,2

Write μ = Pr (θ = 1|x = 0, R) for the probability player 2 assigns on her nontrivial 
information set. Write β for the probability that she plays b at that information 
set. Write p = Pr (R|θ = 1)  for the probability player 1 plays R on the upper 
branches. Similarly, write q = Pr (R|θ = 0). Notice that player 1 assigns 1/2 to 
x = 1 on his first non-trivial information set (θ = 1; empty  history).  
Now, at that information set, if player 1 plays R, he gets 3 with probability 
1/2 + (1/2)β = (1 + β) /2 and 0 with the remaining probability. He gets 2 from 
playing L, so by sequential rationality 

p =


⎧⎨ ⎩


1 if β > 1/3 
[0, 1] if β = 1/3 
0 if β < 1/3. 

When θ = 0, he gets  3 with probability β if he plays R and 2  for sure if he plays  
L. Hence, by sequential rationality 

q =


⎧⎨ ⎩


1 if β > 2/3 
[0, 1] if β = 2/3 
0 if β < 2/3. 

Finally sequential rationality for player 2 implies that 

β =


⎧⎨ ⎩


1 if μ > 2/3 
[0, 1]
 if μ = 2/3 
0 if μ < 2/3. 

Towards computing sequential equilibria, let’s rule out certain values for β. Firstly, 
if β > 2/3, then  p = q = 1, and hence by consistency μ = 1/2 < 2/3, showing  that  
β = 0, a contradiction. Hence, β ≤ 2/3. On the other hand, if β ∈ (1/3, 2/3), 
then p = 1 and q = 0, so  that  μ = 0 (by consistency), yielding β = 0, another  
contradiction. Hence, β ∈ [0, 1/3]∪ {2/3}. These values indeed correspond to the 
two components of sequential equilibria. 
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First component: β = 2/3; μ = 2/3 (by sequential rationality of 2); p = 1, and  q = 1/2

(by consistency).1


Second Component: p = q = 0; β ≤ 2/3; μ ≤ 2/3.


Given the above equations, it is easy to verify that each combination in the above com
-
ponents yields a sequential equilibrium. There is a continuum of sequential equilibria,

but there are only two sequential equilibrium outcomes.


2. Consider an infinitely repeated game with discount factor δ and the stage game 

C D 
C 5, 5 0, 5 + θ 
D 5 + θ, 0 θ, θ 

where θ ∈ 
£ 
− ̄ θ

¤ 
θ À 5. All previous actions are common knowledge. θ, ̄ for some ¯

(a) (7 points) Assuming that θ is common knowledge and fixed throughout the re-
peated game, compute the best "strongly symmetric" subgame perfect equilib-
rium. (A strategy profile is strongly symmetric if the players’ actions are identical 
for every given history.) 
Answer: When θ ≤ 0, the best equilibrium is clearly, each player playing their 
dominant dominant C at all histories. Similarly, when θ ≥ 5, always playing the 
dominant action D is the best SPE (the best possible outcome). Now consider 
the case θ ∈ (0, 5). As in Abreu’s theorem, we can take the outcome path after a 
deviation as the worst SPE, which is playing the static equilibrium (D, D) forever. 
On the path they play (C, C). In order this to be an equilibrium it must be that 
5 ≥ (5 + θ) (1− δ) + δθ, i.e., 

5δ ≥ θ. 

Hence, when θ ≤ 5δ, the the best strongly symmetric SPE is play (C, C) until 
someone deviates, and play (D, D) thereafter. It is always play (D, D) when 
θ >  5δ. 

(b) (7 points) Assume that every day a new θ is drawn, and (θ0, θ1, . . .) are iid with 
uniform distribution on 

£ 
− ̄ θ

¤
θ, ̄ , where  θt is the θ at t. Assume  also  that  θt becomes 

common knowledge at t. Consider the following Grim Trigger strategy: on the 
path play C at t iff θt ≤ θ̂, and if any player deviates play C iff θt ≤ 0 thereafter. 
[The cutoff is θ̂ on the path and 0 off the path.] Find the conditions (on θ̂ and δ) 
under which each player playing the Grim Trigger strategy is a subgame-perfect 
equilibrium. 
Answer: The value of being on the path is ³ ´ 1− θ̂ θ̂ + θ̄ θ̂ 

f θ̂ = + 5. 
2θ̄ 

· 
2 2θ̄

· 

The value of deviation is f (0). For this to be an equiliubrium, for each θ ≤ θ̂, we  
must have ³ ´ 

5 (1− δ) + δf θ̂ ≥ (5 + θ) (1− δ) + δf (0) 

1 μ = p/ (p + q), i.e., 2/3 = 1/ (1 + q) . 
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i.e., h ³ ´ iδ 
θ ≤ 

1 − δ
f θ̂ − f (0) . (1) 

Therefore, we must have h ³ ´ iδˆ ˆθ ≤ 
1 − δ

f θ − f (0) . 

In order for playing D when θ >  ̂θ, it  suffices that θ̂ ≥ 0. For the best equilibrium, 
we consider the largest θ̂ with equality. For convenience, let’s rewrite the equation 
as ³ ´ ³ 

ˆ
´ f θ̂ − f (0) 1 − δ 

g θ = . (2) ≡ 
θ̂ δ 

Since f is concave, g is decreasing in θ̂, and hence there is a unique solution to this 
equation, which you can compute algebraically. Using (1) and the single deviation 
principle, one can easily show that this condition is also sufficient. 

(c) (7 points) In part (b), assume instead that the players do not know θt, but  each  
player i observes a signal xi,t = θt + εηi,t at date t, where  ε >  0 is small, the 
random variables 

¡
θt, η1,t, η2,t 

¢ 
are all stochastically independent, and each ηi,t is 

uniformly distributed on [−1, 1]. Consider the following Grim Trigger strategy: 
At the initial state, play C at t iff x i,t ≤x̂. If any player plays D, switch to the 
punisment state, and remain there forever. At the punishment state, play C iff 
x i,t ≤0. 
Find the conditions under which each player playing the Grim Trigger strategy is 
a perfect Bayesian Nash equilibrium in the limit ε 0.→ 

Answer: (This question was inspired by Sylvain Chassang’s dissertation.) In the 
limit ε 0, the value of being at the initial state is F (x̂) and the value of being →
in the punishment state is f (0) (as in  part (b)).  The value  F (x̂) is different from 
f (x̂) because of possibility of punisment on the path. To compute F , letting 
π = 

¡
x̂+ θ̄ 

¢ 
/ 
¡
2θ̄
¢ 
to be the probability of remaining on the path, we write £¡ ¢ ¡ ¢ ¤

F (x̂) =  π [5 (1 − δ) +  δF (x̂)] + (1 − π) x̂+ θ̄ / 2θ̄ + δf (0)· 

and obtain 

π5 (1  − δ) +  (1  − π) 
¡
x̂+ θ̄ 

¢ 
/ 
¡
2θ̄
¢ 
+ (1  − π) δf (0)

F (x̂) =  (3) 
1 − δπ 

f (x̂) +  (1  − π) δf (0) 
= . 

1 − δπ 

Hence, the augmented game in the limit is 

C D 
C 5 (1  − δ) +  δF (x̂) , 5 (1  − δ) +  δF (x̂) δf (0) , (1 − δ) x2 + δf (0) 
D (5 + xi) (1  − δ) +  δf (0) , δf  (0) (1 − δ) xi + δf (0) , (1 − δ) xj + δf (0) 

. 
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Notice that probability that the other player plays C is Pr (xj ≤ x̂|xi). Hence, 
one must play C (in the limit) iff 

δ [F (x̂) − f (0)] Pr (xj ≤ x̂|xi) ≥ (1 − δ) xi. (4) 

By continuity (for ε >  0), we must have 

δ [F (x̂) − f (0)] Pr (xj ≤ x̂|xi = x̂) = (1  − δ) x̂, 

i.e., 
δ [F (x̂) − f (0)] /2 = (1  − δ) x̂, 

yielding 
F (x̂) − f (0)

= 2  
1 − δ

. (5) 
x̂

· 
δ 

Moreover, since Pr (xj ≤ x̂|xi) is decreasing in xi, one can check from (4) that 
we have a Nash equilibrium of the augmented game, and the condition is indeed 
sufficient. 

(d)  (4 points)  Comparing the  cutoffs, briefly discuss your findings. 
Answer: Players have the option value of getting 5 on the equilibrium path. 
Hence, uncertainty about the future values of θ makes the equilibrium path more 
attractive, making enforcement easier, and allowing more cooperation in part (b). 
On the other hand, even the slightest asymmetric information leads to substantial 
"fear of miscoordination" in equilibrium. This is reflected by the fact that the 
right-hand side of (5) doubled, reflecting the fact that at the cutoff there is a  
probability 1/2 that there will be miscoordination. Moreover, the initial state 
becomes less attractive because there will need to be punishment on the path. 
This also makes enforcement of more difficult, leading less efficient outcomes. 
Indeed, from  (5), we can  write  

(1 − δ) (f (x̂) − f (0))
F (x̂) − f (0) = 

1 − δπ 
, 

and the condition (5) becomes 

g (x̂) =  2  
1 − δπ 

. 
δ 

Notice that the right hand side increased in two ways: 1 − δ increased to 1 − δπ 
because of possibility of punishment and it is doubled because of misccordination 
fear. Overall, since g is decreasing the cutoff become much smaller: x̂ θ̂. There  ¿
is a substantial range of parameters for which cooperation becomes unfeasible as 
we introduce slight incomplete information. 

3. This question is about monotone transformations of supermodular games. 

(a) (5 points) For a lattice (S, ≥), give an example of functions u : S R and 
f : R R such that u is supermodular, f is strictly increasing, but f 

→ 
u is not → ◦

supermodular.

Answer: Take S = (0, 1)2 , u (x, y) = (x + y)2 , a supermodular function, and

f = log, so that  f (u (x, y)) = 2 log (x + y), a submodular function.
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(b) (12 points) Consider a supermodular game	G = (N,S, u) (with order ≥) and  
strictly increasing function f : RN RN . Show that the game G0 = (N,S, f u)→	 ◦
has Nash equilibria s∗ and s∗∗ such that s∗ ≥ s ≥ s∗∗ for every rationalizable 
strategy profile s in game G0. What is the relation between s∗ and s∗∗ and the 
extremal equilibria of G. 
Answer: Let s̄ and s be the extremal equilibria of G. Then, s̄ and s are Nash 
equilibria of G0 and s̄ ≥ s ≥s for every rationalizable strategy s in G0. That  is,  
s∗ = s̄ and s∗∗ =s. Let  me  first show that s̄ is a Nash equilibrium of G0. For  any  
i ∈ N and si ∈ Si, since  s̄ is a Nash equilibrium of G, 

ui (si, s̄−i) ≤ ui (s̄i, s̄−i) , 

and since f is increasing, 

fi (ui (si, s̄−i)) ≤ fi (ui (s̄i, s̄−i)) , 

showing that s̄ is a Nash equilibrium of G0. Similarly, s is a Nash equilibrium 
of G0.  I  will  now show that  s̄ ≥ s ≥s for every rationalizable strategy s in G0, 
following Milrom and Roberts. For this it suffices to generalize their lemma for 
G to G0: if  xi ≥6 bi (x), then  xi is strictly dominated by xi ∨ bi (x) in G, i.e., 

ui (xi ∨ bi (x) , s−i) > ui (xi, s−i) ∀s−i ∈ S−i, (6) 

where x is the smallest element of S and bi is the smallest best reply. But since 
fi is increasing, (6) immediately implies that 

fi (ui (xi ∨ bi (x) , s−i)) > fi (ui (xi, s−i)) ∀s−i ∈ S−i, (7) 

i.e., xi is strictly dominated by xi ∨ bi (x) in G’. That is b (x) is the smallest 
strategy profile among the profiles that survives the  first round of elimination of 
doiminated strategies in G0. Applying (7) inductively as in Milgrom and Roberts, 
one concludes that if si ≥6 si, then  si is eliminated at some round on iterated 
dominance for G0. (Recall  that  s= supk b

k (x).) 

(c) (8 points) Give an example of supermodular Bayesian game	 (N,Θ, T, A, u, p), 
where (A,≥) is a complete lattice and u (a, θ, t) is continuous and supermodular 
in a for each θ and t, and a strictly increasing function f : RN RN such that →
the largest rationalizable strategy profile in game G0 = (N,Θ, T, A, f  u, p) is not ◦
a Bayesian Nash equilibrium of game G0. [Hint:  You  can  take  |T | = 1, so  that  
there is only payoff uncertainty.]

Answer: Many of you found the following solution, which is simpler than my

original solution. Take |T | = 1, so that there is no asymmetric information, and

suppress the trivial type profile in the notation. Take θ ∈ {0, 1} with Pr (0) = 1/2.

Take the payoff matrix and the actions as follows:


θ = 1  a b θ = 0  a b

a α, α 0, 0 

0, 0 −1,−1 
a 

b b 
−1,−1 0, 0 
0, 0 α, α 

6




Take α >  1 so  that  the game is  supermodular  with  the order  a > b. Take  
f (α) ∈ (0, 1), f (0) = 0 and f (−1) = −1, a monotone transformation. Then, the 
normal form game is 

a b 
a (f (α) − 1) /2, (f (α) − 1) /2 0, 0 
b 0, 0 (f (α) − 1) /2, (f (α) − 1) /2 

where (a, a) and (b, b) are not Nash equilibria. 

4. Consider the following variation on Morris-Shin currency attack model. There are two 
speculators and a government. The competitive exchange rate is θ, but the exchange 
rate is pegged at e∗ > 1. The fundamental, θ, is uniformly distributed on [0, L] where 
L > e∗ and is privately known by the government. Each speculator observes a signal 
xi = θ+ηi where ηi is uniformly distributed on [−ε, ε] where ε is very small but positive 
and θ, η1, and  η2 are independent. The value of the peg for the government is v, which  
is privately known by the government and uniformly distributed on [v̄ − 1, v̄] for some 
v̄ ∈ (0, 1), close to 1. Each speculator i shortsells ai ∈ [0, 1] units of the currency, 
and observing a1 and a2 the government decides whether to defend the currency. The 
value of the  peg for  the government is  v, and buying each unit of the currency costs 
c, where  c ∈ (1/ (2e∗) , ¯ (a1 + a2) ifv/2), so that the payoff of the government is v − c
it defends and 0 otherwise. The payoff of speculator i is (e∗ − θ) ai − a γ /γ

· 
− tai if the i 

government does not defend the currency and −a γ/γ − tai if it defends, where γ ≥ 2i 

and 0 < t < (1 − v̄) e∗. 

(a) (10 points) Show that there exists a pure strategy s∗ such that all perfect Bayesian 
Nash equilibrium strategies converge to s∗ as ε 0. (Formalize this statement.) →
Answer: By sequential rationality, the government defends the currency iff 

v − c (a1 + a2) > 0;· 

the case of indifference is irrelevant. Call this strategy s∗ . Given  s∗ , the  proba-G G

bility that the peg will be abandoned given a1 and a2 is 

P (a1, a2) = Pr (v ≤ c (a1 + a2)) = c (a1 + a2) + (1  − v̄) .· · 

Hence, conditional on θ, a1 and a2, the expected payoff of speculator i is 

ui (a1, a2, θ) =  P (a1, a2) (e∗ − θ) ai − tai − a γ /γ. i 

For a PBNE, we need to have a Bayesian Nash equilibrium in this reduced form 
game between the speculators. If the reduced form game satisfies the assumptions 
of Frankel, Morris, and Pauzner, then all rationalizable strategies and in particular 
all Bayesian Nash equilibria will converge to some (s∗ 

1, s
∗ 
2), and all PBNE in the 

original game will converge to s∗ = (s∗ 
1, s2

∗, s∗ ). I now check their conditions: G

1. Dominance for ai = 0: At  θ = e∗, 

∂ui (a1, a2, θ  = e∗) /∂ai = −t− a γi 
−1 ¿ 0. 

Since ui is continuously differentiable there is ¯ such that uiθ < e∗ is strictly 
decreasing in ai for any θ ∈ (θ̄, e∗]. 
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2. Dominance for ai = 1: At  θ = 0, for  any  a1, a2 ∈ [0, 1], 

∂ui (a1, a2, θ  = 0) /∂ai = (2cai + caj + 1− v̄) e∗ − t − a γ−1 ¡ ¢ i 

> 2ce∗ai − a γ−1 + (1− v̄ − t) > 0.i 

Since ui is continuously differentiable, ui is strictly increasing in ai on a 
neighborhood of θ = 0. 

3. Strategic complementarity: 

∂2ui 
= c (e∗ − θ) ≥ 0. 

∂ai∂aj 

4. Monotonicity: 

∂2ui 
= − (2cai + caj + 1− v̄) < − (1− v̄) < 0. 

∂ai∂θ 

Since ∂2ui is negative and uniformly bounded away from 0, their uniform 
∂ai∂θ 

bound is satisfied (with the reverse order on θ). 

(b) (10 points) Taking 1− v̄ ∼ = 0 (i.e. ignoring these variables), compute s∗.= t ∼
Answer: Recall that (s∗ 

1 (x) , s
∗ 
2 (x)) is a symmetric Nash equilibrium of the com-

plete information (reduced-form) game with θ = x; sG 
∗ is already fixed. Hence, 

we first need to compute the symmetric Nash equilibria of the complete informa-
tion game for speculators. By continuity of ui, NE are continuous with respect 
to v̄ and t; hence, we will take 1 − v̄ = t = 0. For an interior equilibrium 
a1 = a2 = a ∈ (0, 1), we need 

∂ui 
= (2ca + ca) (e∗ − x)− a γ−1 = 0,

∂ai 

i.e., 
a = (3c (e∗ − x))1/(γ−2) . 

1We have a ∈ (0, 1), when  3c (e∗ − x) ∈ (0, 1), i.e. when x ∈ 
¡
e∗ − 

3c
, e∗ 
¢ 
. Check  

that the second order condition ∂2ui/∂a2 = 2c (e∗ − x) − (γ − 1) aγ−2 < 0 isi 

satisfied. The only other possible symmetric pure strategy equilibria are the 
corner solution. For a1 = a2 = 0 to be an equilibrium, we need 

∂ui ¡ ¢ 
0 ≥ 

∂ai 
|aj =0 = 2cai (e

∗ − x)− ai
γ−1 = ai 2c (e

∗ − x)− ai
γ−2 . 

The condition will not be satisfied around 0 whenever x < e∗. Hence we have this 
equilibrium only at x = e∗.2 In order for a1 = a2 = 1  to be an equilibrium, we 
need 

∂ui γ−1 

∂ai 
|ai=aj =1 = (2cai + c) (e∗ − x)− ai = 3c (e∗ − x)− 1 ≥ 0, 

2There was a region where a1 = a2 = 0 is the only equilibrium, but this dominance region shrinks to a 
single point as t 0.→ 
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which is satisfied only when x ≤ e∗ − 1 . It turns out that there is a unique 
3c 

symmetric pure strategy Nash equilibrium for each value of x. Since  s∗ 
i is a 

selection from these equilibria, it is simply the unique solution: ½ 

s∗ 
i (x) =  (3c (e∗ − x))1/(γ−2) if x > e∗ − 

3
1 
c 

1 otherwise. 

(c) (5 points) Briefly describe what rationality assumptions you have made for your 
solution.

Notice that we only used sequential rationality for the government and then ap-

plied rationalizability (by Frankel, Pauzner, and Morris) in the reduced game.

Hence, the assumptions are


1. the government is sequentially rational, 
2. speculators are rational, and 

3. (i) and (ii) are common knowledge among the speculators. 
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