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Road Map 

• Normal-form Games 
• Dominance & Rationalizability 
• Nash Equilibrium 

– Existence and continuity properties 
• Bayesian Games 

– Normal-form/agent-normal-form 

representations


– Bayesian Nash equilibrium—equivalence to 
Nash equilibrium, existence and continuity 
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Normal-form games 

•	 A (normal form) game is a triplet (N, S, u): 
– N = {1, . . . , n} is a (finite) set of players. 
– S = S1 × … × Sn where Si is the set of pure

strategies of player i. 
– u = (u1,…,un) where ui : S → R is player i’s 

vNM utility function. 
•	 A normal form game is finite if S and N are 

finite. 
•	 The game is common knowledge. 

Mixed Strategies, beliefs 
•	 Δ(X) = Probability distributions on X. 
•	 Δ(Si) = Mixed strategies of player i. 
•	 Independent strategy profile: 

σ = σ1 × ... × σn ∈ Δ(S1) × ... × Δ(Sn) 
•	 correlated strategy profile: 

σ ∈ Δ(S) 
•	 Δ(S-i) = possible conjectures of player i (beliefs

about the other players’ strategies). [σ-i ∈ Δ(S-i)] 
– A player may believe that the other players’ strategies 

are correlated! 
•	 Expected payoffs: 

ui(σ) = Eσ(ui) = Σs∈Sσ(s)ui(s) 
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Rationality & Dominance 
• Player  i is rational if he maximizes his expected payoff 

given his belief. 
•	 si* is a best reply to a belief σ-i iff 

∀si ∈ Si : ui(si*,σ-i) ≥ ui(si,σ-i). 
•	 Bi(σ-i) = best replies to σ-i. 
•	 σi strictly dominates si iff 

∀s-i ∈ S-i : ui(σi,s-i) > ui(si,s-i). 
•	 σi weakly dominates si iff 

∀s-i ∈ S-i : ui(σi,s-i) ≥ ui(si,s-i) with a strict inequality. 

Theorem: In a finite game, si* is never a best reply to a
(possibly correlated) conjecture σ-i iff si* is strictly
dominated (by a possibly mixed strategy). 

Proof of Theorem


•	 Let 
–	 S-i = {s-i 

1,…, s-i
m}, 

–	 ui(si,.) = (ui(si,s-i 
1),…, ui(si,s-i

m)) 
–	 U = {ui(si,.)|si ∈ Si} 
– Co(U) = convex hull of U 

= {ui(σi,.)|σi ∈ Δ(Si)} 
•	 (=>) Assume si *∈Bi(σ-i). 

⇒ ∀si, ui(si*,σ-i) ≥ ui(si,σ-i) 
⇒ ∀σi, ui(si*,σ-i) ≥ ui(σi,σ-i) 
⇒ No σi strictly dominates si*. 

•	 SHT: Let C and D be non-empty, 
disjoint subsets of Rm with C closed. 
Then, ∃r∈Rm\{0} : ∀x∈cl(D) ∀y∈C, 
r⋅x ≥ r⋅y. 

•	 (<=) Define 
D = {x∈Rm|xk > ui(si*,s-i

k) ∀k}. 
•	 Assume si* is not strictly

dominated. 
• Co(U) and D are disjoint. 
•	 By SHT, ∃r: ∀σi, 

ui(si*,σ-i) ≥ ui(σi,σ-i) 
where σ-i(s-i

k) = rk/(r1+…+ rm) 
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Iterated strict dominance & 

Rationalizability


•	 S0 = S 
•	 Si

k = Bi(Δ(S-i
k-1)) 

• (Correlated) Rationalizable strategies: 
∞ 

Si 
∞ =ISi

k 

k =0 

•	 Independent rationalizability: si∈Si
k iff si∈ 

Bi(Πj≠iσj) where σj ∈ Δ(Sj
k-1) ∀j. 

• σi is rationalizable iff σi ∈ Bi(Δ(S-i 
∞)). 

Theorem (fixed-point definition): S∞ is the largest 
set Z1×…× Zn s.t. Zi ⊆ Bi(Δ(Z-i)) for each i. (si is 
rationalizable iff si∈Zi for such Z1×…× Zn.) 

Foundations of rationalizability 

•	 If the game and rationality are common 
knowledge, then each player plays a 
rationalizable strategy. 

•	 Each rationalizable strategy profile is the 
outcome of a situation in which the game and 
rationality are common knowledge. 

•	 In any “adaptive” learning model the ratio of 
players who play a non-rationalizable strategy 
goes to zero as the system evolves. 
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Rationalizability in Cournot

Duopoly


Simultaneously, 
each firm i∈{1,2} 
produces qi units at 
marginal cost c, 
and sells it at price 
P = max{0,1-q1 -q2}. 

1-c 

1 − c 

2 

q1 

q2 

1-c
2 

1 c− 

Rationalizability in Cournot 
duopoly 

•	 If i knows that qj ≤ q, then qi ≥ (1-c-q)/2. 
•	 If i knows that qj ≥ q, then qi ≤ (1-c-q)/2. 
•	 We know that qj ≥ q0 = 0. 
•	 Then, qi ≤ q1 = (1-c-q0)/2 = (1-c)/2 for each i; 
•	 Then, qi ≥ q2 = (1-c-q1)/2 = (1-c)(1-1/2)/2 for each 

i; 
• …  
•	 Then, qn ≤ qi ≤ qn+1 or qn+1 ≤ qi ≤ qn where 

qn+1 = (1-c-qn)/2 = (1-c)(1-1/2+1/4-…+(-1/2)n)/2. 
• As n→∞, qn → (1-c)/3. 
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Nash Equilibrium 
•	 The following are equivalent: 

–	 σ* =(σ1*,…,σ *) is a Nash Equilibriumn
–	 ∀i, σi * ∈ Bi(σ-i*), where Bi contains mixed best replies 
–	 ∀i, ∀si ∈ Si : ui(σi*,σ-i*) ≥ ui(si,σ-i*), 
–	 ∀i, supp(σi*) ⊆ Bi(σ-i*). 

•	 Aumann & Brandenburger: In a 2-person game, if game,
rationality, and conjectures are all mutually known, then 
the conjectures constitute a Nash equilibrium. 

•	 For n>2 players, we need common prior assumption and 
common knowledge of conjectures. 

•	 Steady states of any adaptive learning process are Nash 
equilibria. 

Existence and continuity 
•	 For any correspondence F : X → 2Y, where X compact

and Y bounded, F is upper-hemicontinuous iff F has 
closed graph: 

[xm → x & ym → y & ym ∈ F(xm)] ⇒ y ∈ F(x). 
•	 Berge’s Maximum Theorem (existence and continuity of 

individual optimum): Assume f : X×Z→Y is continuous 
and X, Y, Z are compact. Let 

F(x) = arg maxz∈Zf(x,z). 

Then, F is non-empty, compact-valued, and upper­

hemicontinuous.


•	 Kakutani’s Fixed-point theorem: Let X be a convex, 
compact subset of Rm and let F:X→ 2X be a non-empty, 
convex-valued correspondence with closed graph. Then, 
there exists x∈X such that x∈F(x). 
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Existence of Nash Equilibrium 

Theorem: Let each Si be a convex, compact
subset of a Euclidean space and each ui be 
continuous in s and quasi-concave in si. Then, 
there exists a Nash equilibrium s∈S. 

Corollary: Each finite game has a (possibly mixed) 
Nash equilibrium σ*. 

Proof of corollary: Each Δ(Si) ⊆ Rm is convex and 
compact. Each ui(σ) is continuous, and linear in
σi. Then, the game with strategy spaces Δ(Si)
has a NE σ* ∈ Δ(S1) × … × Δ(Sn). 

Proof of Existence Theorem 

•	 Let F : S → 2S be the “best reply”
correspondence:


Fi(s) = Bi(s-i)

•	 By the Maximum Theorem, F is non-empty 

and has closed graph. 
•	 By quasi-concavity, F is convex valued. 
•	 By Kakutani fixed-point theorem, F has a 

fixed point: s* ∈ F(s*). 
•	 s* is a Nash equilibrium. 
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Upper-hemicontinuity of NE 
• X, S are compact metric spaces 
• ux(s) is continuous in x∈X and s ∈ S. 
• NE(x) is the set of Nash equilibria of (N,S,ux). 
• PNE(x) is pure Nash equilibria of (N,S,ux). 
Theorem: NE and PNE are upper­

hemicontinuous. 
Corollary: If S is finite, NE is non-empty, compact-

valued, and upper-hemicontinuous. 
Proof: 
• Δ(Si) is compact and ux(σ) is continuous in (x,σ). 
• Suppose: xm→x, σm∈NE(xm), σm→σ∉NE(x). 
• ∃i, si: ux(si,σ-i) > ux(σ). 
• u xm (si ,σ − 

m
i ) > u xm (σ m ) for large m. 

Bayesian Games 
• A Bayesian game is a list (N, A, Θ, T, u, p): 

– N = {1, . . . , n} is a (finite) set of players; 
– A = A1 × … × An; Ai is the set of actions of i; 
– Θ is the set of payoff relevant parameters; 
– T = T1 × … × Tn; Ti is the set of types of i; 
– u = (u1,…,un); ui : Θ×A → R is i’s vNM utility function; 
– p ∈ Δ(Θ ×T) is a common prior. 

• A Bayesian game is a list (N, A, Θ, T, u, p) as
above except ui : Θ ×T ×A → R. 

• A Bayesian game is a list (N, A, T, u, p) as above
except ui :T ×A → R. 

Fact: All three formulations are equivalent (as long
as you know what you are doing). 

Fact: We can replace p with p1,…, pn, dropping CPA. 

8 



Normal-form representations 

• Given a Bayesian game Γ=(N,A,Θ,T,u,p), 
• Normal Form:  G(Γ)= (N,S,U): 

– Si = {functions si: Ti → Ai } 
– Ui(s) = Ep[ui(θ,s1(t1),…,sn(tn))]. 

•	 Agent-Normal Form: AG(Γ)= (N,S,U): 
N = T1 ∪L∪Tn 

St = Ai for each ti ∈Tii 

Uti 
(s) = Ep [ui (θ , s1(t1),K, sn (tn )) | ti ] 

Bayesian Nash equilibrium 
Definition: σ* =(σ1*,…,σn*) is a Bayesian Nash 

Equilibrium iff for each i, ti, 

σ i 
*(ai | ti ) > 0 ⇒ ai ∈ arg maxai 

Ep [ui (θ , ai ,σ − 
* 
i (a−i | t−i )) | ti ] 

Fact: σ* is a Bayesian Nash equilibrium of Γ iff the 
profile σ*(·|ti), ti∈Ti, i∈N is a Nash equilibrium of 
AG(Γ). 

Fact: If σ* is a Bayesian Nash equilibrium of Γ, 
then σ* is a Nash equilibrium of G(Γ). Ιf p(ti)>0
for each ti, the converse is also true. 
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Existence of BNE 

Consider Γ=(N,A,Θ,T,u,p) with finite N and T. 
Theorem: If 

•	 each Ai is compact and convex 
•	 each ui is bounded, continuous in a, concave 

in ai, 
then Γ has a pure Bayesian Nash equilibrium. 

Proof: AG(Γ) has a pure Nash equilibrium. 
Corollary: If A is finite, Γ has a (possibly

mixed) Bayesian Nash equilibrium. 

Upper-hemicontinuity of BNE 
• A, T finite and Θ, X compact. 
• ui

x(θ,a) continuous in (x,θ,a) 
• BNE(x) Bayesian NE of Γx = (N,A,Θ,T,ux,p). 
• BNE(p) Bayesian Nash equilibria of (N,A,Θ,T,u,p).

Theorem: BNE is upper-hemicontinuous.

Proof: BNE(x) = NE(AG(Γx)). 

Theorem: Assume p(ti) > 0 ∀p∈P, ∀ti∈Ti, for compact 


P ⊆ Δ(Θ×T). BNE(p) is upper-hemicontinuous on P. 
Proof: Ui(s;p) = Ep[ui(θ,s1(t1),…,sn(tn))] is continuous; 

BNE(p) = NE(G((N,A,Θ,T,u,p))). 

10 



MIT OpenCourseWare
http://ocw.mit.edu 

14.126 Game Theory 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

