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1. Normal-Form Games 

A normal (or strategic) form game is a triplet (N, S, U) with the following properties 

•	 N = {1, 2, . . . , n} is a finite set of players 

•	 Si is the set of pure strategies of player i; S = S1 × . . . × Sn


ui : S R is the payoff function of player i; u = (u1, . . . , un).
• → 

Player i ∈ N receives payoff ui(s) when s ∈ S is played. The game is finite if S is finite. 

The structure of the game is common knoweldge: all players know (N, S, U), and know 

that their opponents know it, and know that their opponents know that they know, and so 

on. 

1.1. Detour on common knowledge. Common knowledge might look like an innocuous 

assumption, but may have strong consequences in some situations. Consider the following 

story. Once upon a time, there was a village with 100 married couples. The women had 

to pass a logic exam before being allowed to marry. The high priestess was not required to 

take that exam, but it was common knowledge that she was truthful. The village was small, 

so everyone would be able to hear any shot fired in the village. The women would gossip 

about adulterous relationships and each knows which of the other husbands are unfaithful. 

However, no one would ever inform a woman that her husband is cheating on her. 

The high priestess knows that not all husbands are faithful and decides that such immoral­

ity should not be tolerated. This is a successful religion and all women agree with the views 

of the priestess. 

The priestess convenes all the women at the temple and publicly announces that the well­

being of the village has been compromised—there is at least one cheating husband. She 
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also points out that even though none of them knows whether her husband is faithful, each 

woman knows about the other unfaithful husbands. She orders that each woman shoot her 

husband on the midnight of the day she finds out. 39 silent nights went by and on the 

40th shots were heard. How many husbands were shot? Were all the unfaithful husbands 

caught? How did some wives learn of their husband’s infidelity after 39 nights in which 

nothing happened? 

Since the priestess was truthful, there must have been at least one unfaithful husband in the 

village. How would events have evolved if there was exactly one unfaithful husband? His wife, 

upon hearing the priestess’ statement and realizing that she does not know of any unfaithful 

husband, would have concluded that her own marriage must be the only adulterous one and 

would have shot her husband on the midnight of the first day. Clearly, there must have been 

more than one unfaithful husband. If there had been exactly two unfaithful husbands, then 

every cheated wife would have initially known of exactly one unfaithful husband, and after 

the first silent night would infer that there were exactly two cheaters and her husband is one 

of them. (Recall that the wives are all perfect logicians.) The unfaithful husbands would 

thus both be shot on the second night. As no shots were heard on the first two nights, all 

women concluded that there were at least three cheating husbands. . . Since shootings were 

heard on the 40th night, it must be that exactly 40 husbands were unfaithful and they were 

all exposed and killed simultaneously. 

For any measurable space X we denote by Δ(X) the set of probability measures (or 

distributions) on X. 1 A mixed strategy for player i is an element σi of Δ(Si). A correlated 

strategy profile σ is an element of Δ(S). A strategy profile σ is independent (or mixed) 

if σ ∈ Δ(S1) × . . . × Δ(Sn), in which case we write σ = (σ1, . . . , σn) where σi ∈ Δ(Si) 

denotes the marginal of σ on Si. A correlated belief for player i is an element σ−i of 

Δ(S−i). The set of independent beliefs for i is j Δ(Sj ). It is assumed that player i =i 

has von Neumann-Morgenstern preferences over Δ(S) and ui extends to Δ(S) as follows 

ui(σ) = σ(s)ui(s). 
s∈S 

1In most of our applications X is either finite or a subset of an Euclidean space. 
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2. Dominated Strategies 

Are there obvious predictions about how a game should be played? 

Example 1 (Prisoners’ Dilemma). Two persons are arrested for a crime, but there is not 

enough evidence to convict either of them. Police would like the accused to testify against 

each other. The prisoners are put in different cells, with no communication possibility. Each 

suspect is told that if he testifies against the other (“Defect”), he is released and given a reward 

provided the other does not testify (“Cooperate”). If neither testifies, both are released (with 

no reward). If both testify, then both go to prison, but still collect rewards for testifying. Each 

C D 

C 1, 1 −1, 2 

D 2, −1 0, 0∗ 

prisoner is better off defecting regardless of what the other does. Cooperation is a strictly 

dominated action for each prisoner. The only feasible outcome is (D, D), which is Pareto 

dominated by (C, C). 

Example 2. Consider the game obtained from the prisoners’ dilemma by changing player 

1’s payoff for (C, D) from −1 to 1. No matter what player 1 does, player 2 still prefers 

C D 

C 1, 1 1, 2∗ 

D 2, −1 0, 0 

D to C. If player 1 knows that 2 never plays C, then he prefers C to D. Unlike in the 

prisoners’ dilemma example, we use an additional assumption to reach our prediction in this 

case: player 1 needs to deduce that player 2 never plays a dominated strategy. 

Formally, a strategy si ∈ Si is strictly dominated by σi ∈ Δ(Si) if


ui(σi, s−i) > ui(si, s−i), ∀s−i ∈ S−i.


We can iteratively eliminate dominated strategies, under the assumption that “I know that 

you know that I know. . . that I know the payoffs and that you would never use a dominated 

strategy.” 
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Definition 1. For all i ∈ N , set S0 = Si and define Sk recursively by i i 

Sk = {si ∈ Sk−1 ∃σi ∈ Δ(Sk−1), ui(σi, s−i) > ui(si, s−i), ∀s−i ∈ Sk−1 
i i | � i −i }. 

The set of pure strategies of player i that survive iterated deletion of strictly dominated 

strategies is Si
∞ = ∩k≥0Si

k . The set of surviving mixed strategies is 

{σi ∈ Δ(Si
∞) ∃σi

� ∈ Δ(Si
∞), ui(σi

�, s−i) > ui(σi, s−i), ∀s−i ∈ S∞| � −i}. 

Note that in a finite game the elimination procedure ends in a finite number of steps, so 

S∞ is simply the set of surviving strategies at the last stage. 

The definition above assumes that at each iteration all dominated strategies of each player 

are deleted simultaneously. Clearly, there are many other iterative procedures that can be 

used to eliminate strictly dominated strategies. However, the limit set S∞ does not depend 

on the particular way deletion proceeds.2 The intuition is that a strategy which is dominated 

at some stage is dominated at any later stage. Furthermore, the outcome does not change if 

we eliminate strictly dominated mixed strategies at every step. The reason is that a strategy 

is dominated against all pure strategies of the opponents if and only if it is dominated against 

all their mixed strategies. Eliminating mixed strategies for player i at any stage does not 

affect the set of strictly dominated pure strategies for any player j = i at the next stage. 

3. Rationalizability 

Rationalizability is a solution concept introduced independently by Bernheim (1984) and 

Pearce (1984). Like iterated strict dominance, rationalizability derives restrictions on play 

from the assumptions that the payoffs and rationality of the players are common knowledge. 

Dominance: what actions should a player never use? Rationalizability: what strategies can 

a rational player choose? It is not rational for a player to choose a strategy that is not a 

best response to some beliefs about his opponents’ strategies. 

What is a “belief”? In Bernheim (1984) and Pearce (1984) each player i’s beliefs σ−i 

about the play of j =� i must be independent, i.e., σ−i ∈ j=� i Δ(Sj ). Independent beliefs are 

consistent with the definition of mixed strategies, but in the context of an iterative procedure 

entail common knowledge of the fact that each player holds such beliefs. Alternatively, we 

2This property does not hold for weakly dominated strategies. 
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may allow player i to believe that the actions of his opponents are correlated, i.e., any 

σ−i ∈ Δ(S−i) is a possibility. The two definitions have different implications for n ≥ 3. We 

focus on the case with correlated beliefs. 

We can again iteratively develop restrictions imposed by common knowledge of the payoffs 

and rationality to obtain the definition of rationalizability. 

Definition 2. Set S0 = S and let Sk be given recursively by 

Sk = {si ∈ Sk−1 
−i ∈ Δ(Sk−1), ui(si, σ−i) ≥ ui(s

�
i, σ i ∈ Sk−1 

i i |∃σ −i −i), ∀s� i }. 

The set of correlated rationalizable strategies for player i is Si
∞ = ∩k≥0Si

k . A mixed 

strategy σi ∈ Δ(Si) is rationalizable if there is a belief σ ∈ Δ(S∞) s.t. ui(σi, σ−i −i −i) ≥ 

ui(si, σ−i) for all si ∈ Si
∞. 

The definition of independent rationalizability replaces Δ(Sk−1) and Δ(S∞) above −i −i

with j=i Δ(Sj
k−1) and j=i Δ(Sj

∞), respectively. 

Definition 3. A strategy s∗ 
i ∈ Si is a best response to a belief σ−i ∈ Δ(S−i) if 

ui(s
∗, σ−i) ≥ ui(si, σ−i), ∀si ∈ Si.i 

We say that a strategy si is never a best response for player i if it is not a best response 

to any σ−i ∈ Δ(S−i). Recall that a strategy si of player i is strictly dominated if there 

exists σi ∈ Δ(Si) s.t. ui(σi, s−i) > ui(si, s−i), ∀s−i ∈ S−i. 

Theorem 1. In a finite game, a strategy is never a best response if and only if it is strictly 

dominated. 

Proof. Clearly, a strategy si strictly dominated for player i by some σi cannot be a best 

response for any belief σ−i ∈ Δ(S−i) as σi yields a strictly higher payoff than si against any 

such σ−i. 

We are left to show that a strategy which is never a best response must be strictly domi­

nated. We prove that any strategy si of player i which is not strictly dominated must be a 

best response for some beliefs. Define the set of “dominated payoffs” for i by 

D = {x ∈ R|S−i||∃σi ∈ Δ(Si), x ≤ ui(σi, )}.·
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Clearly D is non-empty, closed and convex. Also, ui(si, ) does not belong to the interior of ·

D because it is not strictly dominated by any σi ∈ Δ(Si). By the supporting hyperplane 

theorem, there exists α ∈ R|S−i| different from the zero vector s.t. α ui(si, ) ≥ α x, ∀x ∈ D.· · · 

In particular, α ui(si, ) ≥ α ui(σi, ), ∀σi ∈ Δ(Si). Since D is not bounded from below, · · · ·

each component of α needs to be non-negative. We can normalize α so that its components 

sum to 1, in which case it can be interpreted as a belief in Δ(S−i) with the property that 

ui(si, α) ≥ ui(σi, α), ∀σi ∈ Δ(Si). Thus si is a best response to α. � 

Corollary 1. Correlated rationalizability and iterated strict dominance coincide. 

Theorem 2. For every k ≥ 0, each si ∈ Si
k is a best response (within Si) to a belief in 

Δ(Sk 
−i). 

Proof. Fix si ∈ Si
k . We know that si is a best response within Si

k−1 to some σ−i ∈ Δ(Sk−1).−i 

If si was not a best response within Si to σ−i, let s�i be such a best response. Since si is a 

best response within Si
k−1 to σ−i, and s�i is a strictly better response than si to σ−i, we need 

s�i ∈/ Si
k−1 . This contradicts the fact that s�i is a best response against σ−i, which belongs to 

Δ(Sk−1). �−i 

Corollary 2. Each si ∈ Si
∞ is a best response (within Si) to a belief in Δ(S∞).−i

Theorem 3. S∞ is the largest set Z1 × . . . × Zn with Zi ⊂ Si, ∀i ∈ N s.t. each element in 

Zi is a best response to a belief in Δ(Z−i) for all i. 

Proof. Clearly S∞ has the stated property by Theorem 2. Suppose that there exists Z1 × 

. . . × Zn �⊂ S∞ satisfying the property. Consider the smallest k for which there is an i such 

that Zi �⊂ Si
k . It must be that k ≥ 1 and Z−i ⊂ Sk−1 . By assumption, every element in Zi−i 

is a best response to an element of Δ(Z−i) ⊂ Δ(Sk−1), contradicting Zi �⊂ Si
k . �−i 

Example 3 (Rationalizability in Cournot duopoly). Two firms compete on the market for 

a divisible homogeneous good. Each firm i = 1, 2 has zero marginal cost and simultaneously 

decides to produce an amount of output qi ≥ 0. The resulting price is p = max(0, 1−q1 −q2). 

Hence, if q1 + q2 ≤ 1, the profit of firm i is given by qi(1 − q1 − q2). The best response 

correspondence of firm i is Bi(qj ) = (1 − qj )/2 (j = 3 − i). If i knows that qj � q then 

Bi(qj ) � (1 − q)/2. 
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We know that qi ≥ q0 = 0 for i = 1, 2. Hence qi ≤ q1 = Bi(q
0) = (1 − q0)/2 for all i. But 

then qi ≥ q2 = Bi(q
1) = (1 − q1)/2 for all i. . . We obtain 

∀i, q0 ≤ q 2 ≤ . . . ≤ q 2k ≤ . . . ≤ qi ≤ . . . ≤ q 2k+1 ≤ . . . ≤ q 1 , �kwhere q2k = 1/4l = (1 − 1/4k)/3 and q2k+1 = (1 − q2k)/2 for all k ≥ 0. Clearly, l=1 

limk→∞ q
k = 1/3, hence the only rationalizable strategy for firm i is qi = 1/3. This is also 

the unique Nash equilibrium, which we define next. 

4. Nash Equilibrium 

Many games are not solvable by iterated strict dominance or rationalizability. The concept 

of Nash (1950) equilibrium has more bite in some situations. The idea of Nash equilibrium 

was implicit in the particular examples of Cournot (1838) and Bertrand (1883) at an informal 

level. 

Definition 4. A mixed-strategy profile σ∗ is a Nash equilibrium if for each i ∈ N 

ui(σ
∗, σ∗ ) ≥ ui(si, σ

∗ 
i −i −i), ∀si ∈ Si. 

Note that if a player uses a nondegenerate mixed strategy in a Nash equilibrium (one 

that places positive probability weight on more than one pure strategy) then he must be 

indifferent between all pure strategies in the support. Of course, the fact that there is no 

profitable deviation in pure strategies implies that there is no profitable deviation in mixed 

strategies either. 

Example 4 (Matching Pennies). Pure strategy equilibria do not always exist. 

H T 

H 1, −1 −1, 1 

T −1, 1 1, −1 

Nash equilibria are “consistent” predictions of how the game will be played—if all play­

ers predict that a specific Nash equilibrium will arise then no player has incentives to play 

differently. Each player must have correct “conjectures” about the strategies of their op­

ponents and play a best response to his conjecture. Formally, Aumann and Brandenburger 
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(1995) provide a framework that can be used to examine the epistemic foundations of Nash 

equilibrium. The primitive of their model is an interactive belief system in which each 

player has a possible set of types, which correspond to beliefs about the types of the other 

players, a payoff for each action, and an action selection. Aumann and Brandenburger show 

that in a 2-player game, if the game being played (i.e., both payoff functions), the rationality 

of the players, and their conjectures are all mutually known, then the conjectures constitute 

a (mixed strategy) Nash equilibrium. Thus common knowledge plays no role in the 2-player 

case. However, for games with more than 2 players, we need to assume additionally that 

players have a common prior and and that conjectures are commonly known. 

So far, we have motivated our solution concepts by presuming that players make predic­

tions about their opponents’ play by introspection and deduction, using knowledge of their 

opponents payoffs, knowledge that the opponents are rational, knowledge about this knowl­

edge. . . Alternatively, we may assume that players extrapolate from past observations of play 

in “similar” games, with either current opponents or “similar” ones. They form expecta­

tions about future play based on past observations and adjust their actions to maximize 

their current payoffs with respect to these expectations. The idea of using learning-type 

adjustment processes originates with Cournot (1838). In that setting (Example 3), players 

take turns setting their outputs, each player choosing a best response to the opponent’s last 

period action. Alternatively, we can assume simultaneous belief updating, best responding to 

sample average play, populations of players being anonymously matched, etc. If the process 

converges to a particular steady state, then the steady state is a Nash equilibrium. While 

convergence always occurs in Example 3, this is not always the case. How sensitive is the 

convergence to the initial state? If convergence obtains for all initial strategy profiles suffi­

ciently close to the steady state, we say that the steady state is asymptotically stable. See 

figures 1.13-1.15 (pp. 24-26) in FT. The Shapley (1964) cycling example is interesting. Also, 

adjustment processes are myopic and do not represent a compelling description of behavior. 

Definitely such processes do not provide good predictions for behavior in the repeated game. 

5. Existence and Continuity of Nash equilibria 

Follow Muhamet’s slides. We need the following result for future reference. 
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Theorem 4. Suppose that each Si is a convex and compact subset of an Euclidean space and 

that each ui is continuous in s and quasi-concave in si. Then there exists a pure strategy 

Nash equilibrium. 
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