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1. Existence and Continuity of Nash Equilibria 

Follow Muhamet’s slides. We need the following result for future reference. 

Theorem 1. Suppose that each Si is a convex and compact subset of an Euclidean space and 

that each ui is continuous in s and quasi-concave in si. Then there exists a pure strategy 

Nash equilibrium. 

2. Bayesian Games 

When some players are uncertain about the characteristics or types of others, the game is 

said to have incomplete information. Most often a player’s type is simply defined by his 

payoff function. More generally, types may embody any private information that is relevant 

to players’ decision making. This may include, in addition to the player’s payoff function, 

his beliefs about other players’ payoff functions, his beliefs about what other players believe 

his beliefs are, and so on. The idea that a situation in which players are unsure about each 

other’s payoffs and beliefs can be modeled as a Bayesian game, in which a player’s type 

encapsulates all his uncertainty, is due to Harsanyi (1967, 1968) and has been formalized by 

Mertens and Zamir (1985). For simplicity, we assume that a player’s type is his own payoff 

and the type captures all the private information. 

A Bayesian game is a list B = (N, S, Θ, u, p) with 

• N = {1, 2, . . . , n} is a finite set of players 

• Si is the set of pure strategies of player i; S = S1 × . . . × Sn 

• Θi is the set of types of player i; Θ = Θ1 × . . . × Θn 
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• ui : Θ × S → R is the payoff function of player i; u = (u1, . . . , un) 

• p ∈ Δ(Θ) is a common prior (we can relax this assumption). 

We often assume that Θ is finite and the marginal pi(θi) is positive for each type θi. 

Example 1 (First Price Auction with I.I.D. Private Values). One object is up for sale. 

Suppose that the value θi of player i ∈ N for the object is uniformly distributed in Θi = [0, 1] 

and that the values are independent across players. This means that if θ̃i ∈ [0, 1], ∀i then


p(θi ≤ θ̃i, ∀i) =
 i θ̃i. Each player i submits a bid si ∈ Si = [0, ∞). The player with the 

highest bid wins the object and pays his bid. Ties are broken randomly. Hence the payoffs


are given by


ui(θ, s) = 

⎧ ⎪⎨ ⎪⎩


θi−si if si ≥ sj , ∀j ∈ N |{j∈N |si=sj }| 

0 otherwise.


Example 2 (An exchange game). Each player i = 1, 2 receives a ticket on which there is a 

number in some finite set Θi ⊂ [0, 1]. The number on a player’s ticket represents the size of a 

prize he may receive. The two prizes are independently distributed, with the value on i’s ticket 

distributed according to Fi. Each player is asked independently and simultaneously whether 

he wants to exchange his prize for the other player’s prize, hence Si = {agree, disagree}. 

If both players agree then the prizes are exchanged; otherwise each player receives his own 

prize. Thus the payoff of player i is 

ui(θ, s) = 

⎧ ⎪⎨ ⎪⎩


θ3−i if s1 = s2 = agree 

θi otherwise. 

In the normal form representation G(B) of the Bayesian game B player i has 

strategies (si(θi))θi∈Θi ∈ SΘi and utility function Ui given by i 

Ui((si(θi))θi∈Θi,i∈N ) = Ep(ui(θ, s1(θ1), . . . , sn(θn))). 

The agent-normal form representation AG(B) of the Bayesian game B has player 

set ∪iΘi. The strategy space of each player θi is Si. A strategy profile (sθi )θi∈Θi,i∈N yields 

utility 

Uθi ((sθi )θi∈Θi,i∈N ) = Ep(ui(θ, sθ1 , . . . , sθn )|θi) 

for player θi. For the conditional expectation to be well-defined we need pi(θi) > 0. 
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Definition 1. A Bayesian Nash equilibrium of B is a Nash equilibrium of G(B). 

Proposition 1. If pi(θi) > 0 for all θi ∈ Θi, i ∈ N , a strategy profile is a Nash equilibrium 

of G(B) iff it is a Nash equilibrium of AG(B) (strategies are mapped across the two games 

by si(θi) sθi ).→ 

Theorem 2. Suppose that 

N and Θ are finite • 

• each Si is a compact and convex subset of an Euclidean space 

• each ui is continuous in s and concave in si. 

Then B has a pure strategy Bayesian Nash equilibrium. 

Proof. By Proposition 1, it is sufficient to show that AG(B) has a pure Nash equilibrium. 

The latter follows from Theorem 1. We use the concavity of ui in si to show that the 

corresponding Uθi is quasi-concave in sθi . Quasi-concavity of ui in si does not typically 

imply quasi-concavity of Uθi in sθi because Uθi is an integral of ui over variables other than 

sθi . 
1 � 

We can show that the set of Bayesian Nash equilibria of Bx is upper-hemicontinuous with 

respect to x when payoffs are given by ux, assumed continuous in x in a compact set X, if S, Θ 

are finite. Indeed, BNE(Bx) = NE(AG(Bx)). Furthermore, we have upper-hemicontinuity 

with respect to beliefs. 

Theorem 3. Suppose that N, S, Θ are finite. Let P ⊂ Δ(Θ) be such that for every p ∈ P 

pi(θi) > 0, ∀θi ∈ Θi, i ∈ N . Then BNE(Bp) is upper-hemicontinuous in p over P . 

Proof. Since BNE(Bp) = NE(G(Bp)), it is sufficient to note that 

Ui((si(θi))θi∈Θi,i∈N ) = Ep(ui(θ, s1(θ1), . . . , sn(θn))) 

(as defined for G(Bp)) is continuous in p. � 

1Sums of quasi-concave functions are not necessarily quasi-concave. 
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3. Extensive Form Games 

An extensive form game consists of 

•	 a finite set of players N = {1, 2, . . . , n}; nature is denoted as “player 0” 

•	 the order of moves specified by a tree 

•	 each player’s payoffs at the terminal nodes in the tree 

•	 information partition 

•	 the set of actions available at every information set and a description of how actions 

lead to progress in the tree 

•	 moves by nature. 

A tree is a directed graph (X, >)—there is a link from node x to node y if x > y, which 

we interpret as “x precedes y.” We assume that X is finite, there is an initial node φ ∈ X, 

> is transitive (x > y, y > z x > z) and asymmetric (x > y y > x). Hence the tree ⇒	 ⇒ �

has no cycles. We also require that each node x = φ has exactly one immediate predecessor, 

i.e., ∃x� > x such that x�� > x, x�� =� x� implies x�� > x�. A node is terminal if it does not 

precede any other node; this means that the set of terminal nodes is Z = {z| � ∃x, z > x}. 

Each z ∈ Z completely determines a path of moves though the tree (recall the finiteness 

assumption), with associated payoff ui(z) for player i. 

An information partition is a partition of X \ Z. Node x belongs to the information 

set h(x). The same player, denoted i(h) ∈ N ∪ {0}, moves at each node x ∈ h (otherwise 

players might disagree on whose turn to move is). The interpretation is that i(h) is uncertain 

whether he is at x or some other x� ∈ h(x). We abuse notation writing i(x) = i(h(x)). 

The set of available actions at x ∈ X \ Z for player i(x) is A(x). We assume that 

A(x) = A(x�) =: A(h), ∀x� ∈ h(x) (otherwise i(h) might play an infeasible action). A 

function l labels each node x = φ with the last action taken to reach it. We require that 

the restriction of l to the immediate successors of x be bijective on A(x). Finally, a move by 

nature at some node x corresponds to a probability distribution over A(x). 

Let Hi = {h|i(h) = i}. The set of pure strategies for player i is Si = h∈Hi 
A(h). As 

usual, S = i∈N Si. A strategy is a complete contingent plan specifying an action to be 

taken at each information set (if reached). We can define mixed strategies as probability 

distributions over pure strategies, σi ∈ Δ(Si). Any mixed strategy profile σ ∈ i∈N Δ(Si), 
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along with the distribution of the moves by nature and the labeling of nodes with actions, 

leads to a probability distribution O(σ) ∈ Δ(Z). We denote by ui(σ) = EO(σ)(ui(z)). The 

associated normal form game is (N, S, u). 

Two strategies si, s
�
i ∈ Si are equivalent if O(si, s−i) = O(s�i, s−i), ∀s−i, that is, they lead 

to the same distribution over outcomes regardless of how the opponents play. See figure 3.9 

in FT p. 86. Si
R is a subset of Si that contains exactly one strategy from each equivalence 

class. The reduced normal form game is given by (N, SR, u). 

A behavior strategy specifies a distribution over actions for each information set. For­

mally, a behavior strategy bi(h) for player i(h) at information set h is an element of Δ(A(h)). 

We use the notation bi(a|h) for the probability of action a at information set h. A behavior 

strategy bi for i is an element of h∈Hi 
Δ(A(h)). A profile b of behavior strategies determines 

a distribution over Z in the obvious way. Clearly, bi is equivalent to σi with 

σi(si) = bi(si(h)|h), 
h∈Hi 

where si(h) denotes the projection of si on A(h). 

To guarantee that every mixed strategy is equivalent to a behavior strategy we need to 

impose the additional requirement of perfect recall. Basically, prefect recall means that 

no player ever forgets any information he once had and all players know the actions they 

have chosen previously. See figure 3.5 in FT, p. 81. Formally, perfect recall stipulates that 

if x�� ∈ h(x�), x is a predecessor of x� and the same player i moves at both x and x� (and thus 

at x��) then there is a node x̂ in the same information set as x (possibly x itself) such that 

x̂ is a predecessor of x�� and the action taken at x along the path to x� is the same as the 

action taken at x̂ along the path to x��. Intuitively, the nodes x� and x�� are distinguished by 

information i does not have, so he cannot have had it at h(x); x� and x�� must be consistent 

with the same action at h(x) since i must remember his action there. 

Let Ri(h) be the set of pure strategies for player i that do not preclude reaching the 

information set h ∈ Hi, i.e., Ri(h) = {si|h is on the path of some (si, s−i)}. If the game has 

prefect recall, a mixed strategy σi is equivalent to a behavior strategy bi defined by 

{si∈Ri(h)|si(h)=a} σi(si) 
bi(a h) = � ,|

si∈Ri(h) σi(si) 

when the denominator is positive and any distribution when it is zero. 
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Many different mixed strategies can generate the same behavior strategy. Consider the 

example from FT p. 88, figure 3.12. Player 2 has four pure strategies, s2 = (A, C), s�2 = 

(A, D), s��2 = (B, C), s���2 = (B, D). Now consider two mixed strategies, σ2 = (1/4, 1/4, 1/4, 1/4), 

which assigns probability 1/4 to each pure strategy, and σ2 = (1/2, 0, 0, 1/2), which assigns 

probability 1/2 to each of s2 and s���2 . Both of these mixed strategies generate the behavior 

strategy b2 with b2(A|h) = b2(B|h) = 1/2 and b2(C|h�) = b2(D|h�) = 1/2. Moreover, for any 

strategy σ1 of player 1, all of σ2, σ2
� , b2 lead to the same probability distribution over terminal 

nodes. For example, the probability of reaching node z1 equals the probability of player 1 

playing U times 1/2. 

The relationship between mixed and behavior strategies is different in the game illustrated 

in FT p. 89, figure 3.13, which is not a game of perfect recall (player 1 forgets what he 

did at the initial node; formally, there are two nodes in his second information set which 

obviously succeed the initial node, but are not reached by the same action at the initial 

node). Player 1 has four strategies in the strategic form, s1 = (A, C), s�1 = (A, D), s1
�� = 

(B, C), s���1 = (B, D). Now consider the mixed strategy σ1 = (1/2, 0, 0, 1/2). As in the last 

example, this generates the behavior strategy b1 = {(1/2, 1/2), (1/2, 1/2)}, where player 1 

mixes 50 − 50 at each information set. But b1 is not equivalent to the σ1 that generated it. 

Indeed (σ1, L) generates a probability 1/2 for the terminal node corresponding to (A, L, C) 

and a 1/2 probability for (B, L, D). However, since behavior strategies describe independent 

randomizations at each information set, (b1, L) assigns probability 1/4 to each of the four 

paths (A, L, C), (A, L, D), (B, L, C), (B, L, D). Since both A vs. B and C vs. D are choices 

made by player 1, the strategy σ1 under which player 1 makes all his decisions at once allows 

choices at different information sets to be correlated. Behavior strategies cannot produce 

this correlation in the example, because when it comes time to choose between C and D, 

player 1 has forgotten whether he chose A or B. 

Theorem 4 (Kuhn 1953). Under perfect recall, mixed and behavioral strategies are equiva­

lent. 

Hereafter we restrict attention to games with perfect recall, and use mixed and behavior 

strategies interchangeably. Behavior strategies prove more convenient in many arguments 
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and constructions. We drop the notation b for behavior strategies and instead use σi(ai|h) 

to denote player i’s probability of playing action ai at information set h. . . 

4. Backward Induction and Subgame Perfection 

An extensive form game has perfect information if all information sets are singletons. 

Backward induction can be applied to any extensive form game of perfect information with 

finite X (which means that the number of “stages” and the number of actions feasible at 

any stage are finite). The idea of backward induction is formalized by Zermelo’s algorithm. 

Since the game is finite, it has a set of penultimate nodes, i.e., nodes whose (all) immediate 

successors are terminal nodes. Specify that the player who moves at each such node chooses 

the strategy leading to the terminal node with the highest payoff for him. In case of a tie, 

make an arbitrary selection. Next each player at nodes whose immediate successors are 

penultimate (or terminal) nodes chooses the action maximizing his payoff over the feasible 

successors, given that players at the penultimate nodes play as assumed. We can now roll 

back through the tree, specifying actions at each node. At the end of the process we have a 

pure strategy for each player. It is easy to check that the resulting strategies form a Nash 

equilibrium. 

Theorem 5 (Zermelo 1913; Kuhn 1953). A finite game of perfect information has a pure-

strategy Nash equilibrium. 

Moreover, the backward induction solution has the nice property that each player’s actions 

are optimal at every possible history if the play of the opponents is held fixed, which we 

call subgame perfection. More generally, subgame perfection extends the logic of backward 

induction to games with imperfect information. The idea is to replace the “smallest” proper 

subgame with one of its Nash equilibria and iterate this procedure on the reduced tree. In 

stages where the “smallest” subgame has multiple Nash equilibria, the procedure implicitly 

assumes that all players believe the same equilibrium will be played. To define subgame 

perfection formally we first need the definition of a proper subgame. Informally, a proper 

subgame is a portion of a game that can be analyzed as a game in its own right. 

Definition 2. A proper subgame G of an extensive form game T consists of a single 

node x and all its successors in T , with the property that if x� ∈ G and x�� ∈ h(x�) then 
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x�� ∈ G. The information sets and payoffs of the subgame are inherited from the original 

game. That is, two nodes are in the same information set in G if and only if they are in the 

same information set in T , and the payoff function on the subgame is just the restriction of 

the original payoff function to the terminal nodes of G. 

The requirements that all the successors of x be in the subgame and that the subgame 

does not “chop up” any information set ensure that the subgame corresponds to a situation 

that could arise in the original game. In figure 3.16, p. 95 of FT, the game on the right is 

not a subgame of the game on the left, because on the right player 2 knows that player 1 

has not played L, which he did not know in the original game. 

Together, the requirements that the subgame begin with a single node x and respect 

information sets imply that in the original game x must be a singleton information set, i.e. 

h(x) = {x}. This ensures that the payoffs in the subgame, conditional on the subgame being 

reached, are well defined. In figure 3.17, p. 95 of FT, the “game” on the right has the 

problem that player 2’s optimal choice depends on the relative probabilities of nodes x and 

x�, but the specification of the game does not provide these probabilities. In other words, 

the diagram on the right cannot be analyzed as a separate game; it makes sense only as a 

component of the game on the left, which provides the missing probabilities. 

Since payoffs conditional on reaching a proper subgame are well-defined, we can test 

whether strategies yield a Nash equilibrium when restricted to the subgame. 

Definition 3. A behavior strategy profile σ of an extensive form game is a subgame perfect 

equilibrium if the restriction of σ to G is a Nash equilibrium of G for every proper subgame 

G. 

Because any game is a proper subgame of itself, a subgame perfect equilibrium profile is 

necessarily a Nash equilibrium. If the only proper subgame is the whole game, the sets of 

Nash and subgame perfect equilibria coincide. If there are other proper subgames, some 

Nash equilibria may fail to be subgame perfect. 

It is easy to see that subgame perfection coincides with backward induction in finite games 

of perfect information. Consider the penultimate nodes of the tree, where the last choices are 

made. Each of these nodes begins a trivial one-player proper subgame, and Nash equilibrium 

in these subgames requires that the player make a choice that maximizes his payoff. Thus 
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any subgame perfect equilibrium must coincide with a backward induction solution at every 

penultimate node, and we can continue up the tree by induction. 

5. Important Examples of Extensive Form Games 

5.1. Repeated games with observable actions. 

• time t = 0, 1, 2, . . . (usually infinite) 

• stage game is a normal-form game G 

• G is played every period t 

• players observe the realized actions at the end of each period 

• payoffs are the sum of discounted payoffs in the stage game. 

Repeated games are a widely studied class of dynamic games. There is a lot of research 

dealing with various restrictions on the information about past play. 

5.2. Multistage games with observable actions. 

• stages k = 0, 1, 2, . . . 

• at stage k, after having observed a “non-terminal” history of play h = (a0, . . . , ak−1), 

each player i simultaneously chooses an action ai
k ∈ Ai(h) 

• payoffs given by u(h) for each terminal history h. 

Often it is natural to identify the “stages” of the game with time periods, but this is not 

always the case. A game of perfect information can be viewed as a multistage game in which 

every stage corresponds to some node. At every stage all but one player (the one moving at 

the node corresponding to that stage) have singleton action sets (“do nothing”; can refer to 

these players as “inactive”). Repeated versions of perfect information extensive form games 

also lead to multistage games, e.g., the Rubinstein (1982) alternating bargaining game, which 

we discuss later. 

6. Single (or One-Shot) Deviation Principle 

Consider a multi-stage game with observed actions. We show that in order to verify that 

a strategy profile σ is subgame perfect, it suffices to check whether there are any histories 

ht where some player i can gain by deviating from the actions prescribed by σi at ht and 

conforming to σi elsewhere. 
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Definition 4. A strategy σi is unimprovable given σ−i if ui(σi, σ−i| ht) ≥ ui(σi
�, σ−i| ht) 

for every t ≥ 0, ht ∈ Hi and σi
� ∈ Δ(Si) with σ�(ht

�
� ) = σi(h

�
t� ) for all h�t� ∈ Hi \ {ht}.i

Hence a strategy σi is unimprovable if after every history, no strategy that differs from it at 

only one information set can increase utility. Obviously, if σ is a subgame perfect equilibrium 

then σi is unimprovable given σ−i. To establish the converse, we need an additional condition. 

Definition 5. A game is continuous at infinity if for each player i the utility function 

ui satisfies 

lim sup 
˜
|ui(h) − ui(h̃)| = 0. 

t→∞ {(h,h̃)|ht =ht} 

This condition requires that events in the distant future are relatively unimportant. It 

is satisfied if the overall payoffs are a discounted sum of per-period payoffs and the stage 

payoffs are uniformly bounded. 

Theorem 6. Consider a (finite or infinite horizon) multi-stage game with observed actions2 

that is continuos at infinity. If σi is unimprovable given σ−i then σi is a best response to σ−i 

conditional on any history ht. 

Proof. Suppose that σi is unimprovable given σ−i, but σi is not a best response to σ−i 

following some history ht. Let σi 
1 be a strictly better response and define 

(6.1) ε = ui(σ
1, σ−i|ht) − ui(σi, σ−i|ht) > 0.i 

Since the game is continuos at infinity, there exists t� > t and σi 
2 such that σi 

2 is identical 

to σi 
1 at all information sets up to (and including) stage t�, σi 

2 coincides with σi across all 

longer histories and 

(6.2) |ui(σi 
2, σ−i|ht) − ui(σi 

1, σ−i|ht)| < ε/2. 

In particular, 6.1 and 6.2 imply that 

ui(σi 
2, σ−i|ht) > ui(σi, σ−i|ht). 

2We allow for the possibility that the action set be infinite at some stages. 
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Denote by σi 
3 the strategy obtained from σi 

2 by replacing the stage t� actions following 

any history ht� with the corresponding actions under σi. Conditional on any history ht� , the 

strategies σi and σi 
3 coincide, hence 

(6.3) ui(σi 
3, σ−i|ht� ) = ui(σi, σ−i|ht� ).


As σi is unimprovable given σ−i, and σi and σ2 only differ at stage t� conditional on ht� , we
i 

need 

(6.4) ui(σi, σ−i|ht� ) ≥ ui(σi 
2, σ−i|ht� ). 

Then 6.3 and 6.4 lead to 

ui(σi 
3, σ−i|ht� ) ≥ ui(σi 

2, σ−i|ht� ) 

for all histories ht� (consistent with ht). Since σi 
2 and σi 

3 coincide before reaching stage t�, 

we obtain 

ui(σi 
3, σ−i|ht) ≥ ui(σi 

2, σ−i|ht). 

Similarly, we can construct σi 
4, . . . , σi

t�−t+3 . The strategy σi
t�−t+3 is identical to σi condi­

tional on ht and 

ui(σi, σ−i|ht) = ui(σi
t�−t+3, σ−i|ht) ≥ . . . ≥ ui(σi 

3, σ−i|ht) ≥ ui(σi 
2, σ−i|ht) > ui(σi, σ−i|ht), 

a contradiction. � 

7. Iterated Conditional Dominance 

Definition 6. In a multistage game with observable actions, an action ai is conditionally 

dominated at stage t given history ht if in the subgame starting at ht every strategy for player 

i that assigns positive probability to ai is strictly dominated. 

Proposition 2. In any perfect information game, every subgame perfect equilibrium survives 

iterated elimination of conditionally dominated strategies. 
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8. Bargaining with Alternating Offers 

The set of players is N = {1, 2}. For i = 1, 2 we write j = 3 − i. The set of feasible utility 

pairs is U ⊂ R2, assumed to be compact and convex with (0, 0) ∈ U . 3 Time is discrete and 

infinite, t = 0, 1, . . . Each player i discounts payoffs by δi, so receiving ui at time t is worth 

δi
tui. 

Rubinstein (1982) analyzes the following perfect information game. At every time t = 

0, 1, . . ., player i(t) proposes an alternative u = (u1, u2) ∈ U to player j = 3 − i(t); the 

bargaining protocol specifies that i(t) = 1 for t even and i(t) = 2 for t odd. If j accepts the 

offer, then the game ends yielding a payoff vector (δ1
t u1, δ2

t u2). Otherwise, the game proceeds 

to period t + 1. If agreement is never reached, each player receives a 0 payoff. 

For each player i, it is useful to define the function gi by setting 

gi (uj) = max {ui| (u1, u2) ∈ U} . 

Notice that the graphs of g1 and g2 coincide with the Pareto-frontier of U . 

8.1. Stationary subgame perfect equilibrium. Let (m1, m2) be the unique solution to 

the following system of equations 

m1 = δ1g1 (m2) 

m2 = δ2g2 (m1) . 

Note that (m1, m2) is the intersection of the graphs of the functions δ2g2 and (δ1g1)
−1 . 

We are going to argue that the following “stationary” strategies constitute the unique 

subgame perfect equilibrium. In any period where player i has to make an offer to j, he 

offers u with uj = mj and j accepts only offers u with uj ≥ mj . We can use the single-

deviation principle to check that this is a subgame perfect equilibrium. 

8.2. Equilibrium uniqueness. We prove that the subgame perfect equilibrium is unique 

by arguing that it is essentially the only strategy profile that survives iterated conditional 

dominance. 

3The set of feasible utility outcomes U can be generated from a set of contracts or decisions X in a natural 

way. Define U = {(v1 (x) , v2 (x)) |x ∈ X} for a pair of utility functions v1 and v2 over X. With additional 

assumptions on X, v1, v2 we can ensure that the resulting U is compact and convex. 
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Theorem 7. If a strategy profile survives iterative elimination of conditionally dominated 

strategies, then it is identical to the stationary subgame perfect equilibrium except for the 

nodes at which a player is indifferent between accepting and rejecting an offer in the subgame 

perfect equilibrium. 

Proof. Since player i can get 0 by never reaching an agreement, offering an alternative that 

gives him less than 

mi 
0 = 0 

or accepting such an offer at any history is conditionally dominated. All such offers are 

eliminated at the first stage of the iteration. Then i should never expect to receive more 

than 

Mi 
0 = δigi (0) 

in any future period following a disagreement. Hence rejecting an offer u with ui > Mi 
0 

is conditionally dominated by accepting such an offer for i. Once we eliminate the latter 

strategies, i always accepts offers u with ui > Mi 
0 from j. Then making offers u with ui > Mi 

0 

is dominated for j by offers ū = λu + (1 − λ) (Mi 
0, gj (Mi 

0)) for λ ∈ (0, 1). We remove all the 

strategies involving such offers. 

Under the surviving strategies, j can reject an offer from i and make an offer next period 

that leaves him with slightly less than gj (Mi 
0), which i accepts. Hence accepting any offer 

that gives him less than 

mj 
1 = δj gj Mi 

0 

is dominated for j. Moreover, making such offers is dominated for j because we argued above 

that offers with ui > Mi 
0 are dominated. After we eliminate such moves, i cannot expect 

more than � � � � �� 
Mi 

1 = δigi m 1 
j = δigi δj gj Mi 

0 

in any future period following a disagreement. 

We can recursively define the sequences 

mj
k+1 = δj gj Mi

k 

Mk+1 = δigi m k+1 
i j 
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for i = 1, 2 and k ≥ 1. Since both g1 and g2 are decreasing functions, we can easily show 

that the sequence (mi
k) is increasing and (Mi

k) is decreasing. By arguments similar to those 

above, we can prove by induction on k that, at some stage in the iteration, player i = 1, 2 

never accepts or makes an offer with ui < mk • i 

• always accepts offers with ui > Mi
k, but making such offers is dominated for j. 

The sequences (mk
i ) and (Mi

k) are monotonic and bounded, so they need to converge. The 

limits satisfy 

m∞
j = δj gj δigi m∞

j 

Mi
∞ = δigi m∞

j . 

It follows that (m∞
1 , m

∞
2 ) is the (unique) intersection point of the graphs of the functions δ2g2 

and (δ1g1)
−1 . Moreover, Mi

∞ = δigi m∞
j = m∞

i . Therefore, no strategy for i that rejects 

u with ui > Mi
∞ = m∞

i or accepts u with ui < m∞
i = Mi

∞ survives iterated elimination of 

conditionally dominated strategies. Also, no strategy for i to offer u with ui = Mi
∞ = m∞

i 

survives. � 

9. Nash Bargaining 

Assume that U is such that g2 is decreasing, strictly concave and continuously differentiable 

(derivative exists and is continuous). The Nash (1950) bargaining solution u∗ is defined 

by {u∗} = arg maxu∈U u1u2 = arg maxu∈U u1g2(u1). It is the outcome (u∗ 
1, g2(u

∗)) uniquely 1

pinned down by the first order condition g2(u1
∗)+u1

∗g2
� (u1

∗) = 0. Indeed, since g2 is decreasing 

and strictly concave, the function f , given by f(x) = g2(x) + xg2
� (x), is strictly decreasing 

and continuous and changes sign on the relevant range. 

Theorem 8. Suppose that δ1 = δ2 =: δ in the alternating bargaining model. Then the unique 

subgame perfect equilibrium payoffs converge to the Nash bargaining solution as δ 1.→ 

Proof. Recall that the subgame perfect equilibrium payoffs are given by (g1(m2), m2) where 

(m1, m2) satisfies 

m1 = δg1 (m2) 

m2 = δg2 (m1) . 
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It follows that g1(m2) = m1/δ, hence m2 = g2(g1(m2)) = g2(m1/δ). We rewrite the equations 

as follows 

g2(m1/δ) = m2 

g2 (m1) = m2/δ. 

By the mean value theorem, there exists ξ ∈ (m1, m1/δ) such that g2(m1/δ) − g2(m1) = 

(m1/δ −m1)g
� (ξ), hence (m2 −m2/δ) = (m1/δ −m1)g

� (ξ) or, equivalently, m2 +m1g
� (ξ) = 0. 2 2 2

Substituting m2 = δg2 (m1) we obtain δg2 (m1) + m1g2
� (ξ) = 0. 

Note that (g1(m2), m2) converges to u∗ as δ 1 if and only if (m1, m2) does. In order → 

to show that (m1, m2) converges to u∗ as δ 1, it is sufficient to show that any limit point → 

of (m1, m2) as δ 1 is u∗. Let (m∗ 
1, m

∗ 
2) be such a limit point corresponding to a sequence → 

(δk)k≥0 → 1. Recognizing that m1, m2, ξ are functions of δ, we have 

(9.1) δkg2 (m1(δk)) + m1(δk)g2
� (ξ(δk)) = 0. 

Since ξ(δk) ∈ (m1(δk), m1(δk)/δk) with m1(δk), m1(δk)/δk → m∗ 
1 as k →∞ and g2

� is contin­

uos by assumption, in the limit 9.1 becomes g2 (m
∗ 
1)+m∗ 

1g2
� (m1

∗) = 0. Therefore, m∗ 
1 = u1

∗. � 
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