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1. Sequential Equilibrium 

In multi-stage games with incomplete information, say where payoffs depend on initial 

moves by nature, the only proper subgame is the original game, even if players observe one 

another’s actions at the end of each period. Thus the refinement of Nash equilibrium to 

subgame perfect equilibrium has no bite. Since players do not know the others’ types, the 

start of a period can only be analyzed as a separate subgame when the players’ posterior 

beliefs are specified. The concept of sequential equilibrium proposes a way to derive plausible 

beliefs at every information set. Based on the beliefs, one can test whether the continuation 

strategies form a Nash equilibrium. 

The complications that incomplete information causes are easiest to see in “signaling 

games”—leader-follower games in which only the leader has private information. The leader 

moves first; the follower observes the leader’s action, but not the leader’s type, before choos­

ing his own action. One example is Spence’s (1974) model of the job market. In that model, 

the leader is a worker who knows her productivity and must choose a level of education; 

the follower, a firm (or number of firms), observes the worker’s education level, but not her 

productivity, and then decides what wage to offer her. In the spirit of subgame perfection, 

the optimal wage should depend on the firm’s beliefs about the worker’s productivity given 

the observed education. An equilibrium needs to specify not only contingent actions, but 

also beliefs. At information sets that are reached with positive probability in equilibrium, 

beliefs should be derived using Bayes’ rule. However, there are some theoretical issues about 

belief update following zero-probability events. 
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Refer for more motivation to the example in FT, figure 8.1 (p. 322). The strategy profile 

(L, A) is a Nash equilibrium, which is subgame perfect as player 2’s information set does 

not initiate a proper subgame. However, it is not a very plausible equilibrium, since player 

2 prefers playing B rather than A at his information set, regardless of whether player 1 has 

chosen M or R. So, a good equilibrium concept should rule out the solution (L, A) in this 

example and ensure that 2 always plays B. The problem with the considered equilibrium is 

that player 2 does not play a best response to any possible belief at his information set. 

For most definitions, we focus on extensive form games of prefect recall with finite sets of 

decision nodes. We use some of the notation introduced earlier. 

A sequential equilibrium (Kreps and Wilson 1982) is an assessment (σ, µ), where σ is 

a (behavior) strategy profile and µ is a system of beliefs. The latter component consists 

of a belief specification µ(h) over the nodes at each information set h. The definition of 

sequential equilibrium is based on the concepts of sequential rationality and consistency. 

Sequential rationality requires that conditional on every information set h, the strategy 

σi(h) be a best response to σ−i(h) given the beliefs µ(h). Formally, 

ui(h)(σi(h), σ−i(h)|h, µ(h)) ≥ ui(h)(σi
�
(h), σ−i(h)|h, µ(h)) 

for all information sets h and alternative strategies σ�. 

Beliefs need to be consistent with strategies in the following sense. For any fully mixed 

strategy profile σ̃—that is, one where each action is played with positive probability at every 

information set—all information sets are reached with positive probability and Bayes’ rule 

leads to a unique system of beliefs µσ̃. The assessment (σ, µ) is consistent if there exist a 

sequence of fully mixed strategy profiles (σm)m≥0 converging to σ such that the associated 

beliefs µσm 
converge to µ as m →∞. 

Definition 1. A sequential equilibrium is an assessment which is sequentially rational and 

consistent. 

The definition of sequential equilibrium rules out the strange equilibrium in the earlier 

example (FT figure 8.1). Since player 1 chooses L under the proposed equilibrium strategies, 

consistency does not pin down player 2’s beliefs at his information set. However, sequential 
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rationality requires that player 2 have some beliefs and best-respond to them, which ensures 

that A is not played. 

Consistency imposes more restrictions than Bayes’ rule alone. Consider figure 8.3 in FL 

(p. 339). The information set h1 of player 1 consists of two nodes x, x�. Player 1 can take an 

action D leading to y, y� respectively. Player 2 cannot distinguish between y and y� at the 

information set h2. If 1 never plays D in equilibrium, then Bayes’ rule does not pin down 

beliefs at h2. However, consistency implies that µ2(y|h2) = µ1(x|h1). The idea is that since 

1 cannot distinguish between x and x�, he is equally likely to tremble at either node. Hence 

trembles ensure that players’ beliefs respect the information structure. 

More generally, consistency imposes common beliefs following deviations from equilibrium 

behavior. There are criticisms of this requirement—why should different players have the 

same theory about something that was not supposed to happen? A contra-argument is that 

consistency matches the spirit of equilibrium analysis, which normally assumes that players 

agree in their beliefs about other players’ strategies (namely, players share correct conjectures 

about each other’s strategies). 

2. Properties of Sequential Equilibrium 

Theorem 1. A sequential equilibrium exists for every finite extensive-form game. 

This is a consequence of the existence of perfect equilibria, which we prove later. 

Proposition 1. The sequential equilibrium correspondence is upper hemi-continuous with 

respect to payoffs. 

Proof. Let uk u be a convergent sequence of payoff functions and (σk, µk) (σ, µ) be a → → 

convergent sequence of sequential equilibria of the games with corresponding payoffs uk . We 

need to show that (σ, µ) is a sequential equilibrium for the game with payoffs given by u. 

Sequential rationality of (σ, µ) is straightforward because the expected payoffs conditional 

on reaching any information set are continuous in the payoff functions and beliefs. 

We also have to check consistency of (σ, µ). As (σk, µk) is a sequential equilibrium of 

the game with payoff function uk, there exists a sequence of completely mixed strategies 

(σm,k)m σk, with corresponding induced beliefs given by (µm,k)m µk . For every k,→ → 
mkwe can find a sufficiently large mk so that each component of σk,mk and µ are within 
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1/k from the corresponding one under σk and µk . Since σk σ, µk µ, it must be that → → 

σmk ,k σ, µmk,k µ. Thus we have obtained a sequence of fully mixed strategies converging → → 

to σ, which induces beliefs converging to µ. � 

Kreps and Wilson show that in generic games (i.e., a space of payoff functions such that 

the closure of its complement has measure zero), the set of sequential equilibrium outcome 

distributions is finite. Nevertheless, it is not generally true that the set of sequential equilibria 

is finite, as there may be infinitely many belief specifications for off-path information sets 

that support some equilibrium strategies. We provide an illustration in the context of the 

beer-or-quiche signaling game of Cho and Kreps (1987). 

See figure 11.6 in FT (p. 450). Player 1 is wimpy or surly, with respective probabilities 0.1 

or 0.9. Player 2 is a bully who would like to fight the wimpy type but not the surly one. Player 

1 orders breakfast and 2 decides whether to fight him after observing his breakfast choice. 

Player 1 gets a utility of 1 from having his favorite breakfast—beer if surly, quiche if weak— 

but a disutility of 2 from fighting. When player 1 is weak, player 2’s utility is 1 if he fights 

and 0 otherwise; when 1 is surly, the payoffs to the two actions are reversed. One can show 

that there are two classes of sequential equilibria, corresponding to two distinct outcomes. 

In one set of sequential equilibria, both types of player 1 drink beer, while in the other both 

types of player 1 eat quiche. In both cases, player 2 must fight with probability at least 1/2 

when observing the out-of-equilbrium breakfast in order to make the mismatched type of 

player 1 endure gastronomic horror. Note that either type of equilibrium can be supported 

with any belief for player 2 placing a probability weight of at least 1/2 on player 1 being 

wimpy following the out-of-equilbrium breakfast. Hence there is an infinity of sequential 

equilibrium assessments. 

Kohlberg and Mertens (1986) criticized sequential equilibrium for allowing “strategically 

neutral” changes in the game tree to affect the equilibrium. Compare, for instance, the 

two games in FT figure 8.6 (p. 343). The game on the right is identical to the one on 

the left, except that player 1’s first move is split into two moves in a seemingly irrelevant 

way. Whereas (A, L2) can be supported as a sequential equilibrium for the game on the 

left, the strategy A is not part of a sequential equilibrium for the one on the right. For the 

latter game, in the simultaneous-move subgame following NA, the only Nash equilibrium 
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is (R1, R2), as L1 is strictly dominated by R1 for player 1. Hence the unique sequential 

equilibrium strategies for the right-hand game are (NA, R1, R2). 

Note that the sensitivity of sequential equilibrium to the addition of “irrelevant moves” is 

not a direct consequence of consistency, but is rather implied by sequential rationality. In 

the example above, the problem arises even for subgame perfect equilibria. Kohlberg and 

Mertens (1986) further develop these ideas in their concept of a stable equilibrium. However, 

their proposition that mistakes be “conditionally optimal” is not necessarily compelling. If 

we take seriously the idea that players make mistakes at each information set, then it is not 

clear that the two extensive forms above are equivalent. In the game on the right, if player 

1 makes the mistake of not playing A, he is still able to ensure that R1 is more likely than 

L1; in the game on the left, he might take either action by mistake when intending to play 

A. 

3. Perfect Bayesian Equilibrium 

Perfect Bayesian equilibrium is a concept that has been around for a while and predates 

sequential equilibrium. The idea is similar to sequential equilibrium but with more basic 

requirements about how beliefs are updated. Fudenberg & Tirole (1991) have a paper that 

describes various formulations of PBE. The basic requirements are that strategies should be 

sequentially rational and that beliefs should be derived from Bayes’s rule wherever applicable, 

with no constraints on beliefs at information sets reached with probability zero in equilibrium. 

Other properties that can be imposed: 

•	 In a multi-stage game with independent types — i.e. exactly one move by Nature, 

at the beginning of the game, assigning types to players and such that types are 

independently distributed, with all subsequent actions of observed — beliefs about 

different players should remain independent at each history. (PBE is usually applied 

to games in which Nature moves only at the beginning and actions are observed.) 

•	 Updating should be “consistent”: given a probability-zero history ht at time t, from 

which strategies do call for a positive-probability transition to history ht+1, the belief 

at ht+1 should be given by updating beliefs at ht via Bayes’s rule. 
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•	 “Not signaling what you don’t know”: beliefs about player i at the beginning of 

period t + 1 depend only on ht and action by player i at time t, not also on other 

players’ actions at time t. 

•	 Two different players i, j should have the same belief about a third player k even at 

probability-zero histories. 

All of these conditions are implied by consistency. 

Anyhow, there does not seem to be a single clear definition of PBE in the literature. 

Different sets of conditions are imposed by different authors. For this reason, using sequential 

equilibrium is preferable. 

4. Perfect Equilibrium 

Now consider the following game: 

L R 

U 1, 1 0, 0 

D 0, 0 0, 0 

Both (U, L) and (D, R) are sequential equilibria (sequential equilibrium coincides with 

Nash equilibrium in a normal-form game). But (D, R) seems non-robust: if player 1 thinks 

that player 2 might make a mistake and play L with some small probability, he would rather 

deviate to U . This motivates the definition of (trembling-hand) perfect equilibrium 

(Selten, 1975) for normal-form games. A profile σ is a PE if there is a sequence of “trembles” 

σm σ, where each σm is a completely mixed strategy, such that σi is a best reply to σm →	 −i 

for each m. 

An equivalent approach is to define a strategy profile σε to be an ε-perfect equilibrium 

if there exist ε(si) ∈ (0, ε) for all i, all si, such that σε is a Nash equilibrium of the game 

where players are restricted to play mixed strategies where every strategy si has probability 

at least ε(si). A PE is a profile that is a limit of some sequence of ε-perfect equilibria σε as 

ε 0. (We will not show the equivalence here but it’s not too hard.) → 

Theorem 2. Every finite normal-form game has a perfect equilibrium. 
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Proof. For any ε > 0, we can certainly find a Nash equilibrium of the modified game, where 

each player is restricted to play mixed strategies that place probability at least ε on every 

pure action. (Just apply the usual Nash existence theorem for compact strategy sets and 

quasiconcave payoffs.) By compactness, there is some subsequence of these strategy profiles 

as ε 0 that converges, and the limit point is a perfect equilibrium by definition. �→ 

We would like to extend this definition to extensive-form games. Consider the game in 

Fig 8.11 (p. 353) of FT. They show an extensive-form game and its reduced normal form. 

There is a unique SPE (L1L
�
1, L2). But (R1, R2) is a PE of the reduced normal form. Thus 

perfection in the normal form does not imply subgame-perfection. The perfect equilibrium is 

sustained only by trembles such that, conditional on trembling to L1 at the first node, player 

1 is also much more likely to play R1
� than L�1 at his second node. This seems unreasonable 

— R1
� is only explainable as a tremble. Perfect equilibrium as defined so far thus has the 

disadvantage of allowing correlation in trembles at different information sets. 

The solution to this is to impose perfection in the agent-normal form. We treat the two 

different nodes of player 1 as being different players, thus requiring them to tremble inde­

pendently. More formally, in the agent-normal form game, we have a player corresponding 

to every information set. Given a strategy profile for all the players, each “player” corre­

sponding to an information set h gets payoff given by the payoff of player i(h) from the 

corresponding strategies in the extensive-form game. Thus, the game in figure 8.11 turns 

into a three-player game. The only perfect equilibrium of this game is (L1, L
�
1, L2). 

More generally, a perfect equilibrium in an extensive-form game is defined to be a 

perfect equilibrium of the corresponding agent-normal form. 

Theorem 3. Every PE of a finite extensive-form game is a sequential equilibrium (for some 

appropriately chosen beliefs). 

Proof. Let σ be the given PE. So there exist fully mixed strategy profiles σm σ which → 

are ε-perfect equilibria of the agent-normal form game with ε 0. For each σm we have a → 

well-defined belief system induced by Bayes’s rule. Pick a subsequence for which these belief 

systems converge, to some µ. Then by definition (σ, µ) is consistent. Sequential rationality 

follows exactly from the fact that σ is a perfect equilibrium of the agent-normal form, using 

the first definition of perfect equilibrium. (More properly, this implies that there are no 
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one-shot deviations that benefit any player; by an appropriate adaptation of the one-shot 

deviation principle this shows that σ is in fact fully sequentially rational at every information 

set.) � 

The converse is not true — not every sequential equilibrium is perfect, as we already saw 

with the simple normal-form example above. But for generic payoffs it is true (Kreps & 

Wilson, 1982). 

The set of perfect equilibrium outcomes is not upper-hemicontinuous (unlike sequential 

equilibrium or subgame-perfect equilibrium). The game has (D, R) as a perfect equilibrium 

L R 

U 1, 1 0, 0 

D 0, 0 1/n, 1/n 

for each n > 0, but in the limit where (D, R) has payoffs (0, 0) it is no longer a perfect 

equilibrium. We can think of this as an order-of-limits problem: as n → ∞ the trembles 

against which D and R remain best responses become smaller and smaller. 

5. Proper Equilibrium 

Myerson (1978) considered the notion that when a player trembles, he is still more likely 

to play better actions than worse ones. Myerson’s notion is that a player’s probability of 

playing the second-best action is at most ε times the probability of the best action, the 

probability of the third-best action is at most ε times the probability of the second-best 

action, and so forth. Consider the game in Fig. 8.15 of FT (p. 357). (M, M) is a perfect 

equilibrium, but Myerson argues that it can be supported only using unreasonable trembles, 

where each player has to be likely to tremble to a very bad reply rather than an almost-best 

reply. 

Definition 2. A ε-proper equilibrium is a totally mixed strategy profile σε such that, if 

ui(si, σ−
ε

i) < ui(s
�
i, σ−

ε
i), then σε ≤ εσi

ε(s�i). A proper equilibrium is any limit of some i 

ε-proper equilibria as ε 0.→ 

Theorem 4. Every finite normal-form game has a proper equilibrium. 
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Proof. First prove existence of ε-proper equilibria, using the usual Kakutani argument ap­

plied to the “almost-best-reply” correspondences BRi
ε rather than the usual best-reply corre­

spondences. (BRε(σ−i) is the set of mixed strategies for player i in a suitable compact space i 

of fully mixed strategies that satisfy the inequality in the definiton of ε-proper equilibrium.) 

Then use compactness to see that there exists a sequence that converges as ε 0; its limit → 

is a proper equilibrium. � 

Given an extensive-form game, a proper equilibrium of the corresponding normal form is 

automatically subgame-perfect; we don’t need to go to the agent-normal form. We can show 

this by a backward-induction-type argument. 

Kohlberg and Mertens (1986) showed that a proper equilibrium in a normal-form game is 

sequential in every extensive-form game having the given normal form. However, it will not 

necessarily be a trembling-hand perfect equilibrium in (the agent-normal form of) every such 

game. See Figure 8.16 of FT (p. 358): (Lr) is proper (and so sequential) but not perfect in 

the agent-normal form. 
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