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1. Forward Induction in Signaling Games 

Consider now a signaling game. There are two players, a sender S and a receiver R. 

There is a set T of types for the sender; the realized type will be denoted by t. p(t) denotes 

the probability of type t. The sender privately observes his type t, then sends a message 

m ∈ M(t). The receiver observes the message and chooses an action a ∈ A(m). Finally 

both players receive payoffs uS (t, m, a), uR(t, m, a); thus the payoffs potentially depend on 

the true type, the message sent, and the action taken by the receiver. 

In such a game we will use T (m) to denote the set {t | m ∈ M(t)}. 

The beer-quiche game from before is an example of such a game. T is the set {weak, surly}; 

the messages are {beer, quiche}; the actions are {fight, not fight}. As we saw before, there 

are two sequential equilibria: one in which both types of sender choose beer, and another in 

which both types choose quiche. In each case, the equilibrium is supported by some beliefs 

such that the sender is likely to have been weak if he chose the unused message, and the 

receiver responds by fighting in this case. 

Cho and Kreps (1987) argued that the equilibrium in which both types choose quiche 

is unreasonable for the following reason. It does not make any type for the weak type to 

deviate to ordering beer, no matter how he thinks that the receiver will react, because he is 

already getting payoff 3 from quiche, whereas he cannot get more than 2 from switching to 

beer. On the other hand, the surly type can benefit if he thinks that the receiver will react 

by not fighting. Thus, conditional on seeing beer ordered, the receiver should conclude that 

the sender is surly and so will not want to fight. 
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On the other hand, this argument does not rule out the equilibrium in which both types 

drink beer. In this case, in equilibrium the surly type is getting 3, whereas he gets at most 

2 from deviating no matter how the receiver reacts; hence he cannot want to deviate. The 

weak type, on the other hand, is getting 2, and he can get 3 by switching to quiche if he 

thinks this will induce the receiver not to fight him. Thus only the weak type would deviate, 

so the sender’s belief (that the receiver is weak if he orders quiche) is reasonable. 

Now consider modifying the game by adding an extra option for the receiver: paying 

a million dollars to the sender. Now the preceding argument doesn’t rule out the quiche 

equilibrium — either type of sender might deviate to beer if he thinks this will induce the 

receiver to pay him a million dollars. Hence, in order for the argument to go through, we 

need the additional assumption that the sender cannot expect the receiver to play a bad 

strategy. 

Cho and Kreps formalized this line of reasoning in the intuitive criterion, as follows. 

For any set of types T � ⊆ T , write 

BR(T �, m) = ∪µ | µ(T �)=1BR(µ, m) 

— the set of strategies that R could reasonably play if he observes m and is sure that 

the sender’s type is in T �. Now with this notation established, consider any sequential 

equilibrium, and let u∗ 
S (t) be the equilibrium payoff to a sender of type t. Define 

T̃ (m) = {t uS 
∗ (t) > max uS (t, m, a)}.| 

a∈BR(T (m),m) 

This is the set of types that do better in equilibrium than they could possibly do by sending 

m, no matter how R reacts, as long as R is playing a best reply to some belief. We then 

say that the proposed equilibrium fails the intuitive criterion if there exist a type t� and a 

message m such that 

u∗ 
S (t

�) < min uS (t
�, m, a). 

a∈BR(T (m)\T̃ (m),m) 

In words, the equilibrium fails the intuitive criterion if some type t� of the sender is getting 

a lower payoff than any payoff he could possibly get by playing m if he could thereby convince 

the sender that he could not possibly be in T̃ (m). 

In the beer-quiche example, the all-quiche equilibirum fails this criterion: let t� = surly 

and m = beer; check that T̃ (m) = {weak}. 
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Now we can apply this procedure repeatedly, giving the iterated intuitive criterion. 

We can use the intuitive criterion as above to rule out some pairs (t, m) — type t cannot 

conceivably send message m. Now we can rule out some actions of the receiver, by requiring 

that the receiver should be playing a best reply to some belief about the types that have 

not yet been eliminated (given the message). Given this elimination, we can go back and 

possibly rule out more pairs (t, m), and so forth. 

This idea has been further developed by Banks and Sobel (1987). They say that type t� 

is infinitely more likely to choose the out-of-equilibrium message m than type t if the set 

of best-replies by the receiver that make t� willing to deviate to m is a strict superset of the 

best-replies that make t willing to deviate. Conditional on observing m, the receiver should 

put belief 0 on type t in this case. As above, we can apply this to eliminate possible actions 

by the receiver, and proceed iteratively. This leads to the equilibrium refinement criterion 

of universal divinity. 

Banks and Sobel also give a further criterion D2, which says [oops, sorry I missed out on 

this one]. The motivating application is Spence’s job-market signaling model. With just two 

types of job applicant, the intuitive criterion selects the equilibrium where the low type gets 

the lowest level of education and the high type gets just enough education to deter the low 

type. With more types, the intuitive criterion no longer accomplishes this. Universal divinity 

does manage to uniquely select the separating equilibrium that minimizes social waste by 

having each type get just enough education to deter the next-lower type from imitating him. 

2. Forward Induction in General 

The preceding ideas are all attempts to capture some kind of forward induction: players 

should believe in the rationality of their opponents, even after observing a deviation; thus if 

you observe an out-of-equilibrium action being played, you should believe that your opponent 

expected you to play in a way that made his action reasonable, and this in turn is informative 

about his type (or, in more general extensive forms, about how he plans to play in the future). 

Consider now the extensive-form game as follows: 1 can play O, leading to (2, 2), or I, 

leading to the battle-of-the-sexes game There is an SPE in which player 1 first plays O; con­

ditional on playing I, they play the equilibrium (W, T ). But the following forward-induction 

argument suggests this equilibrium is unreasonable: if player 1 plays I, this suggests he is 
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T W 

T 0, 0 3, 1 

W 1, 3 0, 0 

expecting to coordinate on (T,W ) in the battle-of-the-sexes game, so player 2, anticipating 

this, will play W . Thus if 1 can convince 2 to play W by playing I in the first stage, he can 

get the higher payoff (3, 1). 

This can also be represented in (reduced) normal form. 

T W 

O


IT


IW


2, 2 2, 2 

0, 0 3, 1 

1, 3 0, 0 

This representation of the game shows a connection between forward induction and strict 

dominance. We can rule out IW because it is dominated by O; then the only perfect 

equilibrium of the remaining game is (IT, W ) giving payoffs (3, 1). However, (O, T ) can be 

enforced as a perfect (in fact a proper) equilibrium in the normal-form game. 

Based on this example, Kohlberg and Mertens (1986) define the notion of stable equi­

libria. It is a set-valued concept — not a property of individual equilibrium but of sets of 

strategies, one for each player. They first argue that their solution concept should meet the 

following requirements: 

Iterated dominance: every strategically stable set must contain a strategically stable • 

set of any game obtained by deleting a strictly dominated strategy.


Admissibility: no mixed strategy in a strategically stable set assigns positive proba­
• 

bility to a strictly dominated strategy.


Invariance to extensive-form representation: they define an equivalence relation be­
• 

tween extensive forms and require that any stable set in one game should be stable 

in any equivalent game. 

They then define strategic stability in a way such that these criteria are satisfied. Their 

definition is as follows: A closed set S of NE is strategically stable if it is minimal among 

sets with the following property: for every η > 0, there exists ε� > 0 such that, for all ε < ε�, 
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all choices of 0 < ε(si) ≤ ε for each player i and strategies si, the game where each player i 

is constrained to play every si with probability at least ε(si) has a Nash equilibrium which 

is within distance η of some equilibrium in S. 

Thus, any sequence of ε-perturbed games as ε 0 should have equilibria corresponding → 

to an equilibrium in S. Notice that we need the minimality property of S to give bite to this 

definition — otherwise, by upper hemi-continuity, we know that the set of all Nash equilibria 

would be strategically stable, and we get no refinement. 

The difference with trembling-hand perfection is that there should be convergence to 

one of the selected equilibria for any sequence of perturbations, not just some sequence of 

perturbations. 

They have a theorem that there exists some stable set that is contained in a connected 

component of the set of Nash equilibria. Generically, each component of the set of Nash 

equilibria leads to a single distribution over outcomes in equilibrium; thus, generically, there 

exists a stable set that determines a unique outcome distribution. Moreover, any stable set 

contains a stable set of the game obtained by elimination of a weakly dominated strategy. 

Moreover, stable sets have an even stronger property, “never a weak best reply”; cf. p. 445 

of FT. This is meant to be a way of capturing the idea of forward induction. 

There are actually a lot of stability concepts in the literature. Mertens has more papers 

with alternative definitions. 

Every equilibrium in a stable set has to be a perfect equilibrium. This follows from the 

minimality condition — if an equilbrium is not a limiting equilibrium along some sequence 

of trembles, then there’s no need to include it in the stable set. But notice, these equilibria 

are only guaranteed to be perfect in the normal form, not in the agent-normal form (if the 

game represented is an extensive-form one). 

Some recent papers further develop these ideas. Battigalli and Siniscalchi (2002) are in­

terested in the epistemic conditions that lead to forward induction. They have an epistemic 

model, with state of nature of the form ω = (si, ti)i∈N , where si represents player i’s dispo­

sition to act and ti represents his disposition to believe. ti specifies a belief gi,h ∈ Δ(Ω−i) 

over states of the other players for each information set h of player i. We saw i is rational 

at state ω if si is a best reply to his beliefs ti at each information set. Let R be the set 

of states at which every player is rational. For any event E ⊆ Ω, we can define the set 
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Bi,h(E) = {(s, t) ∈ Ω | gi,h(E) = 1}, i.e. the set of states where i is sure that E has occurred 

(at information set h). We can define Bh(E) = ∩iBi,h. Finally SBi(E) = ∩hBi,h(E), the 

set of states at which i strongly believes in event E, meaning the set of states at which i 

would be sure of E as long as he’s reached an information set where E is possible. Finally, 

they show that SB(R) identifies forward induction — that is, in the states of the world 

where everyone strongly believes that everyone is sequentially rational, strategies must form 

a profile that is not ruled out by forward induction. 

Battigalli and Siniscalchi take this a level further by iterating the strong-beliefs operator 

— everyone strongly believes that everyone strongly believes that everyone is rational, and 

so forth — and this operator leads to backward induction in games of perfect information; 

without perfect information, it leads to iterated deletion of strategies that are never a best 

reply. This gives a formalization of the idea of rationalizability in extensive-form games. 

3. Repeated games 

We now consider the standard model of repeated games. Let G = (N, A, u) be a normal-

form stage game. At time t = 0, 1, ldots, the players simultaneously play game G. At each 

period, the players can all observe play in each previous period; the history is denoted ht = 

(a0, . . . , at−1). Payoffs in the repeated game RG(δ) are given by Ui = (1 − δi) 
∞ δi

tui(a
t).t=0 

The (1 − δi) factor normalizes the sum so that payoffs in the repeated game are on the same 

scale as in the stage game. We assume players play behavior strategies (by Kuhn’s theorem), 

so a strategy for player i is given by a choice of σi(h
t) ∈ Δ(Ai) for each history ht . 

Given such strategies, we can define continuation payoffs after any history ht: Ui(σ|ht). 

If α∗ is a Nash equilibrium of the static game, then playing α∗ at every history is a 

subgame-perfect equilibrium of the repeated game. Conversely: for any finite game G and 

¯ ¯any ε > 0, there exists δ with the property that, for any δ < δ, any SPE of the repeated 

game RG(δ) has the property that, at every history, play is within ε of a static NE. However, 

we usually care about players with high discount factors, not low discount factors. 

The main results for repeated games are “Folk Theorems”: for high enough δ, every 

feasible and individually rational payoff in the stage game can be enforced as an equilibrium 

of the repeated game. There are several versions of such a theorem, which is why we use the 

plural. For now, we look at repeated games with perfect monitoring (as just defined), where 
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the appropriate equilibrium concept is SPE. The way to check an SPE is via the one-shot 

deviation principle. Payoffs from playing a at history ht are given by the value function 

(3.1) Vi(a) = (1 − δ)ui(a) + δUi(σ|ht , a). 

This gives us an easy way to check whether or not a player wants to deviate from a proposed 

strategy, given other player’s strategies. σ is an SPE if and only if, for every history ht , σ|ht 

is a NE of the induced game G(ht, σ) whose payoffs are given by (3.1). 

To state a folk theorem, we need to explain the terms “individually rational” and “feasi­

ble.” The minmax payoff of player i is the worst payoff his opponents can hold him down 

to if he knows their strategies: 

vi = min max ui(ai, α−i). 
α−i∈Δ(A−i) ai∈Ai 

We will let mi, a minmax profile for i, denote a profile of strategies (ai, α−i) (which can 

involve correlation for players −i) that solves this minimization and maximization problem. 

In any SPE — in fact, any Nash equilibrium — i’s payoff is at least his minmax payoff, 

since he can always get at least this much by just best-responding to his opponents’ actions 

in each period separately. This motivates us to say that a payoff vector v is individually 

rational if vi ≥ vi for each i, and it is strictly individually rational if the inequality is 

strict for each i. 

The set of feasible payoffs is the convex hull of the set {u(a) | a ∈ A}. Again note that 

this can include payoffs that are not obtainable in the stage game using mixed strategies, 

because correlation between players may be required. 

Also, in studying repeated games we usually assume the availability of a public random­

ization device that produces a publicly observed signal ωt ∈ [0, 1], uniformly distributed 

and independent across periods, so that players can condition their actions on the signal. 

Properly, we should include the signals (or at least the current period’s signal) in the spec­

ification of the history, but it is conventional not to write it out explicitly. (Fudenberg 

and Maskin (1991) showed that one can actually get rid of the public randomization device 

for sufficiently high δ, by appropriate choice of which periods to play each action profile 

involved.) 

An easy folk theorem is that of Friedman (1971): 
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Theorem 1. If e the payoff vector of some Nash equilibrium of G, and v is a feasible payoff 

vector with vi > ei for each i, then for all sufficiently high δ, there exists an SPE with payoffs 

v. 

Proof. Just specify that the players play whichever action profile gives payoffs v (using the 

public randomization device to correlate their actions if necessary), and revert to the static 

Nash permanently if anyone has ever deviated. � 

So, for example, if there is a Nash equilibrium that gives everyone their minmax payoff 

(for example, in the prisoner’s dilemma), then every individually rational and feasible payoff 

vector is obtainable in SPE. But a more general folk theorem would say that every individ­

ually rational, feasible payoff is achievable in SPE under more general conditions. This is 

harder to show, because in order for one player to be punished by minmax if he deviates, 

others need to be willing to punish him. Thus, for example, if all players have equal payoffs, 

then it may not be possible to punish a player for deviating, because the punisher hurts 

himself as well as the deviator. 

For this reason, the standard folk theorem (due to Fudenberg and Maskin, 1986) requires 

a full-dimensionality condition. 

Theorem 2. Suppose the set of feasible payoffs V has full dimension n. For any feasible 

and strictly individually rational payoff vector v, there exists δ such that whenever δ > δ, 

there exists an SPE of RG(δ) with payoffs v. 

Actually we don’t quite need the full-dimensionality condition — all we need, conceptually, 

is that there are no two players who have the same payoff functions; more precisely, no 

player’s payoff function can be a positive affine transformation of any other’s (Abreu, Dutta, 

& Smith, 1994). 

Proof. Assume first that i’s minmax action profile mi is pure. Consider the action profile a 

for which u(a) = v. Choose v� in the interior of the feasible, individually rational set with 

vi
� < vi for each i. We can do this by full-dimensionality. Let wi denote vi

� with ε added 

to each player’s payoff except for player i; with ε low enough, this will again be a feasible 

payoff vector. 

Strategies are now specified as follows. 
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•	 Phase I: play a, as long as there are no deviations. If i deviates, switch to IIi. 

• Phase IIi: play mi . If player j deviates, switch to IIj . Note that if mi is a pure 

strategy profile it is clear what we mean by j deviating. If it requires mixing it is 

not so clear; this will be dealt with in the second part of the proof. Phase IIi lasts 

for N periods, where N is a number to be determined, and if there are no deviations 

during this time, play switches to IIIi. 

• Phase IIIi: play the action profile leading to payoffs wi forever. If j deviates, go to 

IIj . (This is the “reward” phase that gives players −i incentives to punish in phase 

IIi.) 

We check that there are no incentives to deviate, using the one-shot deviation principle 

for each of the three phases: calculate the payoff to i from complying and from deviating 

in each phase. Phases IIi and IIj (j = i) need to be considered separately, as do IIIi and 

IIIj . 

•	 Phase I: deviating gives at most (1 − δ)M + δ(1 − δN )vi + δN+1v�, where M is some i

upper bound on all of i’s feasible payoffs, and complying gives vi. Whatever N we 

have chosen, it is clear that as long as δ is sufficiently close to 1, complying produces 

a higher payoff than deviating, since vi
� < vi. 

•	 Phase IIi: Suppose there are N � ≤ N remaining periods in this phase. Then comply­

ing gives i a payoff of (1−δN � )vi +δN � vi
�, whereas since i is being minmaxed, deviating 

can’t help in the current period and leads to N more periods of punishment, for a 

total payoff of at most (1 − δN +1)vi + δN+1vi
�. Thus deviating is always worse than 

complying. 

Phase IIj : With N � remaining periods, i gets (1 − δN � )ui(m
j ) + δN � (vj + ε) from • 

complying and at most (1 − δ)M +(δ − δN )vi + δN vi
� from deviating. When δ is large 

enough, complying is preferred. 

•	 Phase IIIi: This is the one case that affects the choice of N . Complying gives vi
�

in every period, while deviating gives at most (1 − δ)M + δ(1 − δN )vi + δN+1vi
�. 

Canceling out common terms, the comparison is between ((1 − δN+1)/(1 − δ))v� andi 

M + ((1 − δN )/(1 − δ))vi. The fractions approach N + 1 and N as δ → 1. So for 

sufficiently large N and δ close enough to 1 the desired inequality will hold. 
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• Phase IIIj : [fill in] 

Now we need to deal with the part where minmax strategies are mixed. This involves 

having the continuations use path-dependent ε rewards so that every player is indifferent 

among all the actions in the support of his minmax strategy — we’ll talk about it more next 

time. � 
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