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When we define a game we implicitly assume that the structure (i.e. the set of play-

ers, their strategy sets and the fact that they try to maximize the expected value of 

the von-Neumann and Morgenstern utility functions) described by the game is common 

knowledge. The exact implications of this implicit assumption is captured by rational-

izability. In this lecture, I will formally demonstrate this fact. 

I will further extend rationalizability to incomplete information games. Of course, 

every incomplete-information game can be represented as a complete information game, 

and the rationalizability is already defined for the latter game. That solution concept is 

called ex-ante rationalizability.  It turns  out that that notion  is more restrictive  and  im-

poses some stronger assumptions than what is intended in incomplete information game. 

To capture the exact implications of the assumptions in the incomplete-information 

game, I will introduce another solution concept, called interim correlated rationalizabil-

ity, which is related to the rationalizability applied to the interim representation of the 

game, in which types are considered as players. 

Along the way, I will introduce a formulation of the Bayesian games that will be used 

in the remainder of the course. 

1 Rationalizability in Complete-Information Games 

Consider a complete-information game (N, S, u), where  N is the set of players, with 

generic elements i, j ∈ N , S = 
Q

i∈N Si is the set of strategy profiles, and u : S RN → 

is the profile of payoff functions ui : S R. A  game  (N, S, u) is said to be finite if N→ 

and S are finite. Implicit in the definition of the game game that player i maximizes 
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the expected  value of  ui with respect to a belief about the other players’ strategies. I 

will next formalize this idea. 

1.1 Belief, Rationality, and Dominance 

Definition 1 For any player i, a  (correlated)  belief of i about the other players’ strate-Q
gies is a probability distribution μ on S−i = j=i Sj.−i 6

Definition 2 The expected payoff from a strategy si against a belief μ−i is Z 
ui 
¡
si, μ−i 

¢ 
= Eμi [ui (si

0 , s−i)] ≡ ui (s
0
i, s−i) dμ−i (s−i) ¡ ¢ P 

Note that in a finite game ui si, μ−i = s−i∈S−i ui (si, s−i) μ−i (s−i). 

Definition 3 For any player i, a  strategy  s∗ 
i is a best response to a belief μ−i if and 

only if 

ui(s
∗ 
i , μ−i) ≥ ui(si, μ−i) (∀si ∈ Si) . 

Here I use the notion of a weak best reply, requiring that there is no other strategy 

that yields a strictly higher payoff against the belief. A notion of strict best reply would 

require that s∗ yields a strictly higher expected payoff than any other strategy. 

Definition 4 Playing si is said to be rational (with respect to μ−i) if  si is a best response 

to a correlated belief  μ−i on S−i. 

Remark 1 (Correlation) The essential part in the definition of a belief is that the 

belief μ−i of player i allows correlation between the other players’ strategies. For example, 

in a game of three players in which each player is to choose between Left and Right, Player 

1 may believe that with probability 1/2 both of the other players will play Left and with 

probability 1/2 both players will play Right. Hence, viewed as mixed strategies, it may 

appear as though Players 2 and 3 use a common randomization device, contradicting the 

fact that Players 2 and 3 make their decisions independently. One may then find such a 

correlated belief unreasonable. This line of reasoning is based on mistakenly identifying 

a player’s belief with other players’ conscious randomization. For Player 1 to have such 

a correlated belief, he does not need to believe that the other players make their decisions 
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together. Indeed, he does not think that the other players are using randomization device. 

He thinks that each of the other players play a pure strategy that he does not know. He 

may assign correlated probabilities on the other players’ strategies because he may assign 

positive probability to various theories and each of these theories may lead to a prediction 

about how the players play. For example, he may think that players play Left (as in the 

cars in England) or players play Right (as in the cars in France) without knowing which 

of the theories is correct. 

Depending on whether one allows correlated beliefs, there are two versions of ratio-

nalizability. Because of the above reasoning, in this course, I will focus on correlated 

version of rationalizability. Note that the original definitions of Bernheim (1985) and 

Pearce (1985) impose independence, and these concepts are identical in two player games. 

Rationality is closely related to the following notion of dominance. 

Definition 5 A strategy  s∗ 
i strictly dominates si if and only if 

ui(s
∗ 
i , s−i) > ui(si, s−i), ∀s−i ∈ S−i. P 

Similarly, a mixed strategy σi strictly dominates si if and only if ui(σi, s−i) ≡ s0i∈Si 
σi(s

0
i)ui(si

0 , s−i) >


ui(si, s−i),∀s−i ∈ S−i. A strategy  si is said to be strictly dominated if and only if there


exists a pure or mixed strategy that strictly dominates si.


That is, no matter what the other players play, playing s∗ 
i is strictly better than 

playing si for player i. In that case, if i is rational, he would never play the strictly 

dominated strategy si. That is, there is no belief under which he would play si, for  s∗ 
i 

would always yield a higher expected payoff than si no matter what player i believes 

about the other players. The converse of this statement is also true, as you have seen in 

the earlier lectures. 

Theorem 1 Playing a strategy si is not rational for i (i.e. si is never a weak best 

response to a belief μ−i) if and  only  if  si is strictly dominated. 

Theorem 1 states that if we assume that players are rational (and that the game is 

as described), then we conclude that no player plays a strategy that is strictly dominated 

(by some mixed or pure strategy), and this is all we can conclude. 
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1.2 Iterated Dominance and Rationalizability 

Let us write 

Si 
1 = {si ∈ Si| si is not strictly dominated} . 

By Theorem 1, Si 
1 is the set of all strategies that are best response to some belief. 

Let us now explore the implications of the assumption that player i is rational and 

knows that the other players are rational. To this end, we consider the strategies si 
that are best response to a belief μ of i on S such that for each s = (sj)j=i with −i −i −i 6

μ−i (s−i) > 0 and for each j, there exists a belief μj of j on S−j such that sj is a best 

response to μj. Here, the first part (i.e.  si is a best response to a belief μ−i) corresponds 

to rationality of i and the second part (i.e. if μ−i (s−i) > 0, then  sj is a best response to 

a belief μj) corresponds to the assumption that i knows that j is rational. By Theorem 

1, each such sj is not strictly dominated, i.e., sj ∈ Sj 
1 . Hence, by another application of 

Theorem 1, si is not strictly dominated given S−
1 
i, i.e., there does not exist a (possibly 

mixed) strategy σi such that 

ui (σi, s−i) > ui (si, s−i) ∀s−i ∈ S−
1 
i. 

Of course, by Theorem 1, the converse of the last statement is also true. Therefore, the 

set of strategies that are rationally played by player i knowing that the other players is 

also rational is © ª 
Si 
2 = si ∈ Si| si is not strictly dominated given S−

1 
i . 

By iterating this logic, one obtains the following iterative elimination procedure, 

called iterative elimination of strictly-dominated strategies. 

Definition 6 (Iterative Elimination of Strictly-Dominated Strategies) Set S0 = 

S, and  for any  m > 0 and set © ª 
Si
m = si ∈ Si| si is not strictly dominated given S−

m
i
−1 , 

i.e., si ∈ Sm iff there does not exist any σi such that i 

ui (σi, s−i) > ui (si, s−i) ∀s−i ∈ S−
m
i
−1 . 
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Rationalizability corresponds to the limit of the iterative elimination of strictly-

dominated strategies. 

Definition 7 (Rationalizability) For any player i, a strategy is said to be rationaliz-

able if and only if si ∈ Si
∞ where \ 

Si
∞ = Si

m . 
m≥0 

Rationalizability corresponds to the set of strategies that are rationally played in sit-

uations in which it is common knowledge that everybody is rational, as defined at the be-

ginning of the lecture. When a strategy si is rationalizable it can be justified/rationalized 

by an indefinite chain of beliefs μ−i as above. On the other hand, if a strategy is not 

rationalizable, it must have been eliminated at some stage m, and such a strategy cannot 

be rationalized by a chain of beliefs longer than m. 

We call the elimination process that keeps iteratively eliminating all strictly dom-

inated strategies until there is no strictly dominated strategy Iterated Elimination of 

Strictly Dominated Strategies; we eliminate indefinitely if the process does not stop. We 

call a strategy rationalizable if and only if it survives iterated elimination of strictly 

dominated strategies. 

I will next recall a fixed-point property of rationalizability from the earlier lectures. 

Definition 8 A set  Z = 
Q

i∈N Zi ⊆ S is said to be closed under rational behavior 

(CURB) iff for every zi ∈ Zi, there exists a belief μzi on Z−i such that zi is a best 

response to μzi . 

It is a useful finger exercise to establish some basic properties of CURB sets. 

Exercise 1 Show the following facts for a finite game (N, S, u). 

1. For any CURB sets	 Z and Z 0, Z ∨ Z 0 ≡ (Zi ∪ Zi
0)i∈N is closed under rational 

behavior. 

2. There exists the largest CURB set. 

The next result establishes a fixed-point definition for rationalizability. 

Proposition 1 For any finite game (N, S, u), S∞ is the largest product set Z ⊆ S that 

is closed under rational behavior. 

Proof. See Lectures 1 and  2.  
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1.3 Common Knowledge of Rationality and Rationalizability 

I will now formalize the idea of common knowledge and show that rationalizability 

captures the idea of common knowledge of rationality precisely. I first introduce the 

notion of an incomplete-information epistemic model. 

Definition 9 (Information Structure) An information (or belief) structure is a list ³	 ´ 
Ω, (Ii)i∈N , (pi,ω)i∈N,ω∈Ω where 

•	 Ω is a (finite) state space, 

•	 Ii is a partition of Ω for each i ∈ N , called information partition of i, 

•	 pi,ω is a probability distribution on Ii (ω), which is the cell of Ii that contains ω, 

representing belief of i. 

Here, state summarizes all relevant facts of the world. Note that only one of the 

state is the true state of the world; all the other states are hypothetical states needed to 

encode the players’ beliefs. If the true state is ω, player  i is informed that the true state 

is in Ii (ω), and he does not get any other information. Such an information structure 

arises if each player observes a state-dependent signal, where Ii (ω) is the set of states in 

which the value of the signal of player i is identical to the value of the signal at state ω. 

The next definition formalizes the idea that Ii summarizes all of the information of i. 

Definition 10 Given any event F ⊆ Ω, player  i is said to know at ω that event F 

obtains iff Ii (ω) ⊆ F . The event that i knows F is 

Ki (F ) = {ω|Ii (ω) ⊆ F } . 

In an information structure one can also check whether a player i knows at ω that 

another player j knows an event F , i.e., whether event Kj (F ) obtains. Clearly, this is 

the case if  Ii (ω) ⊆ Ki (F ). That  is,  for  each  ω0 ∈ Ii (ω), Ij (ω0) ⊆ F . Similarly, we can 

check whether a player i knows that another player j knows that k knows that . . . event 

F obtains. An event F is common knowledge at ω iff one can make such statements 

ad infinitum, i.e., everybody knows that everybody knows that . . . ad infinitum that F 

obtains. There is also a simple formulation of common knowledge. 
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Definition 11 An event F 0 is a public event iff [
F 0 = Ii (ω

0) ∀i ∈ N.	 (1) 
ω0∈F 0 

An event F is said to be common knowledge at ω iff there exists a public event F 0 with 

ω ∈ F 0 ⊆ F . 

Exercise 2 Show the following facts. 

1. The two definitions of common knowledge are equivalent, i.e., (1) holds for some 

F 0 with ω ∈ F 0 ⊆ F iff at ω, everybody  knows  F , everybody knows that every-

body knows F , everybody knows that everybody knows that everybody knows F , ad  

infinitum. 

2. If F is a public event, then F is common knowledge at each ω ∈ F . 

3. If F is a public event, then Ω\F is common knowledge at each ω ∈ Ω\F . 

4.	 Ω is common knowledge at each ω ∈ Ω. 

5. Let	 F be the set of all states at which some proposition q holds and suppose 

that F is common knowledge at ω. Then, there exists an information structure ³	 ´ 
Ω0, (Ii

0)i∈N , (pi,ω)i∈N,ω∈Ω0 with Ii
0 (ω) = Ii (ω) at each i ∈ N and ω ∈ Ω0, such  

that proposition q holds throughout Ω0. 

Remark 2 Note that when it is common knowledge that a proposition is true at a state, ³	 ´ 
then the information structure M = Ω, (Ii)i∈N , (pi,ω)i∈N,ω∈Ω is just a collage of an ³	 ´ 
information structure M 0 = Ω0, (Ii

0)i∈N , (pi,ω)i∈N,ω∈Ω0 on which the proposition holds ³	 ´ 
throughout and another information structure Ω\Ω0, (Ii00)i∈N , (pi,ω)i∈N,ω∈Ω\Ω0 . There-

fore, it is without loss of generality to define common knowledge of a proposition for it 

being true throughout the state space. 

I have so far considered an abstract information structure for players N . In  order  

to give a strategic meaning to the states, we also need to describe what players play at 

each state by introducing a strategy profile s : Ω S.→ 
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³ ´ 
Definition 12 A strategy  profile s : Ω → S with respect to Ω, (Ii)i∈N , (pi,ω)i∈N,ω∈Ω is 

said to be adapted if si (ω) = si (ω0) whenever Ii (ω) = Ii (ω
0). 

The last condition on the strategy profile ensures that each player knows what he is 

playing. The possibility that si (ω) = si (ω0) for some Ii (ω) = Ii (ω
0) would contradict 6

the fact si (ω) is what player i plays at state ω and that he cannot distinguish the states 

ω and ω0 when Ii (ω) = Ii (ω
0). ³ ´ 

Definition 13 An epistemic model is a pair M = Ω, (Ii)i∈N , (pi,ω)i∈N,ω∈Ω , s of an 

information structure and an adapted strategy profile with respect to the information 

structure. 

The ideas of rationality and common knowledge of it can be formalized as follows. ³ ´ 
Definition 14 For any epistemic model M = Ω, (Ii)i∈N , (pi,ω)i∈N,ω∈Ω , s and any 

ω ∈ Ω, a  player  i is said to be rational at ω iff X 
si (ω) ∈ argmax ui (si, s−i (ω0)) pi,ω (ω

0) . 
si∈Si 

ω0∈Ii(ω) 

That is, si (ω) is a best response to s−i under player i’s belief at ω. (Since  s gives 

the strategic meaning to the states, player i’s beliefs about s−i at ω is given by pi,ω and 

the mapping s−i, restricted to Ii (ω).) 

Let’s write 

Ri = {ω|player i is rational at ω} 

for the event that corresponds to the rationality of player i. It  is  common  knowledge  

that player i is rational at ω iff event Ri is common knowledge at ω. 

Definition 15 For any i ∈ N , a  strategy  si ∈ Si is said to be consistent with common ³ ´ 
knowledge of rationality iff there exists a model M = Ω, (Ij)j∈N , (pj,ω)j∈N,ω∈Ω , s with 

state ω∗ at which it is common knowledge that all players are rational and si (ω∗) = si. 

By Remark 2, this is equivalent to saying that there exists a model M such that 

sj (ω
0) is a best response to s−j at each ω0 ∈ Ω for each player j ∈ N . The next result 

states that rationalizability is equivalent to common knowledge of rationality in the sense 

that Si
∞ is precisely the set of strategies that are consistent with common knowledge of 

rationality. 
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Theorem 2 For any player i ∈ N and any si ∈ Si, si is consistent with common 

knowledge of rationality if and only if si is rationalizable (i.e. si ∈ Si
∞). 

Proof. (= ) First,  take any  si that is consistent with common knowledge of rationality. ⇒ ³ ´ 
Then, there exists a model M = Ω, (Ij)j∈N , (pj,ω)j∈N,ω∈Ω , s with a state ω∗ ∈ Ω such 

that si (ω∗) =  si and for each j and ω, X 
sj (ω) ∈ arg max uj (sj, s−j (ω

0)) pj,ω (ω
0) . (2) 

sj ∈Sj 
ω0∈Ij (ω) 

Define Z by setting Zj = sj (Ω). By Proposition 1, in order to show that si ∈ Si
∞, 

it suffices to show that si ∈ Zi and Z is closed under rational behavior. First part is 

immediate, as si = si (ω∗) ∈ si (Ω) =  Zi. To see the second part, for each zj ∈ Zj, noting  

that zj = sj (ω) for some ω ∈ Ω, define belief μ−j,ω on Z−j = sj (Ω) by setting X 
μ−j,ω (s−j) =  pj,ω (ω

0) . (3) 
ω0∈Ij (ω),s−j (ω0)=s−j 

(By definition μ−j,ω is a probability distribution on Z−j .) Then, by (2), X 
zj = sj (ω) ∈ arg max ui (si, s−j (ω

0)) pi,ω (ω
0) 

sj ∈Sj 
ω0∈Ij (ω)X X 

= arg  max  ui (si, s−j ) pi,ω (ω
0) 

sj ∈Sj 
s−j ∈Z−j ω0∈Ij (ω),s−j (ω0)=s−jX 

= arg  max  ui (si, s−j) μ−j,ω (s−j ) , 
sj ∈Sj 

s−j ∈Z−j 

showing that Z is closed under rational behavior. (Here, the first line is by (2);  the  

second equality is by the fact that s is adapted, and the last equality is by definition of 

μ−j,ω.) Therefore, si ∈ Si
∞. 

(⇐ =) Conversely, since S∞ is closed under rational behavior, for every sj ∈ Sj
∞, 

there exists a probability distribution μ−j,sj 
on S−

∞
j against which sj is a best response. 

Define model ³ ´ 
M∗ = S∞, (Ij, pj,s)j∈N,s∈S∞ , s 

with 

Ij (s) =  −j ∀s ∈ S∞{sj} ×¡S∞¢ 
pj,s (s

0) =  μ s0−j,sj −j ∀s0 ∈ Ij (s) 

s (s) =  s ∀s ∈ S∞ 
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In model M∗ it is common knowledge that each player j is rational. Indeed, for each 

s ∈ S∞, X ¡ ¢ ¡ ¢ X ¡ ¢ 
sj (s) = sj ∈ arg max ui s

0
j, s μ s0 = arg max  ui s

0
j , s pj,s (s

0) , 
s0j ∈Sj 

−j −j,s −j
s0j ∈Sj 

−j 
s−j ∈S∞ s0∈Ij (s)−j 

where the equalities are by definition M∗ and the inclusion is by definition of μ−j,s. Of  

course for every si ∈ Si
∞, there exists s = (si, s−i) ∈ S∞ such that si (s) = si, showing 

that si is consistent with common knowledge of rationality. 

2 Games of Incomplete Information 

Now, I will introduce a slightly different formulation of Bayesian games that we will use 

in the rest of the course. 

Definition 16 A Bayesian game is a list (N,A,Θ, T, u, p) where 

• N is the set of players (with generic members i, j) 

• A = (Ai)i∈N is the set of action profiles (with generic member a = (ai)i∈N ) 

• Θ is a set of payoff parameters θ 

• T = (Ti)i∈N is the set of action profiles (with generic member t = (ti)i∈N ) 

• ui : Θ × A→ R is the payoff function of player i, and  

• pi (·|ti) ∈ ∆ (Θ × T−i) is the belief of type ti about (θ, t−i). 

Here, each player i knows his own type ti does not necessarily know θ or the other 

players’ types, about which he has a belief pi (·|ti). The  game  is  defined in terms of 

players’ interim beliefs pi (·|ti), which they obtain after they observe their own type 

but before taking their action. The game can also be defined by ex-ante beliefs pi ∈ 

∆ (Θ × T ) for some belief pi. The game has a common prior if there exists π ∈ ∆ (Θ × T ) 

such that 

pi (·|ti) = π (·|ti) ∀ti ∈ Ti,∀i ∈ N. 

In that case, the game is simply denoted by (N,A,Θ, T, u, π). 
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Remark 3 Recall that in Lecture 2 a Bayesian game was defined by a list (N, A, T, u, π) 

where utility function ui : T × A → R depended on type profile t and the action profile.1 

Here, the utility function depends explicitly on payoff parameters but not on type profiles. 

The formulation here is slightly more general. Given a game (N, A, T, u, π) in the earlier 

formulation, one can simply introduce the set Θ = T of parameters and a new prior 

π̂ on Θ × T with support on the diagonal {(t, t) |t ∈ T}. Conversely, given a game 

(N, A, Θ, T, u, π) in our formulation with ui : Θ × A R, one  can  define a new utility → R 
function vi : T × A → R by vi (t, a) = E [ui (θ, a) |t] =  

θ∈Θ ui (θ, a) dπ (θ|t). Note  

that, however, by suppressing the dependence on the payoff parameter θ, the  earlier  

formulation loses some information. Such information is not needed for Bayesian Nash 

equilibrium, but that information is used by interim correlated rationalizability, the main 

concept we will introduce in this lecture. Also, the interim formulation here reflects the 

idea behind the idea of incomplete information better. 

When a researcher models an incomplete information, there is often no ex-ante stage 

or an explicit information structure in which players observe values of some signals. In 

the modeling stage, each player i has 

some belief τ 1 
i ∈ ∆ (Θ) about the payoffs (and the other aspects of the physical •


world), a belief that is referred to as the first order belief of i, ³ ´ 
Θ)N\{i}some belief τ 2 

i about the payoffs and the other players’ first∈ ∆ Θ × ∆ (¡ ¢•

1order beliefs (i.e. ),
θ, τ
−i 

3 
isome belief τ about the payoffs and the other players’ first and second order beliefs •
 ¢


(i.e. 
¡
θ, τ
1 

−i
2 
−i ),
, τ 


• . . .  up  to  infinity. 

(It is an understatement that some of these beliefs may not be fully articulated even 

in players’ own minds.) 

Modeling incomplete information directly in this form is considered to be quite dif-

ficult. Harsanyi (1967) has proposed a tractable way to model incomplete information 

through a type space. In this formalization, one models the infinite hierarchy of beliefs 

1The notation there was also different, using θ = (θi)i∈N for the type profile t = (ti)i∈N . 
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above through a type space (Θ, T, p) and a type ti ∈ Ti as follows. Given a type ti and 

a type space  (Θ, T, p), one can compute the first-order  belief of type  ti by h1 
i (·|ti) =P 

margΘp (·|ti), so  that  h1 
i (θ ti) =  p (θ, t ti), the second-order belief hi 

2 (·|ti) of type ³ ´ P 
| t−i −i|

ti by h2 
i θ, ĥ1 

−i|ti = {t−i|h1 −i)=ĥ1 p (θ, t−i|ti), and so on. A type space (Θ, T, p) 
−i

and a type ti ∈ Ti model a belief hierarchy (τ 1, τ 2 
i , . . .) iff hk for each k. 

(·|t	 −i} 
i i (·|ti) = τ i

k 

It is important to keep in mind that in a type space only one type profile corresponds 

to the actual incomplete-information situation that is meant to be modeled. All the 

remaining type profiles are hypothetical situations that are introduced in order to model 

the players’ beliefs. 

Recall that given any Bayesian game B = (N,A,Θ, T, u, π) with common prior π, one  

can define ex-ante game G (B) = (N,S, U) where Si = ATi and Ui (s) = Eπ [ui (θ, s (t))]i 

for each i ∈ N and s ∈ S. For any Bayesian game B = (N,A,Θ, T, u, p), one  can  also  ³ ´ S 
define interim game AG (B) =  ˆ S, ˆ where N = i∈N t̂i = Ai for each ti ∈ NN,  ˆ U ˆ Ti, S ˆ

and Ûti (ŝ) = E 
£ 
ui 
¡
θ, ŝt−i 

¢ 
|pi (·|ti)

¤ 
≡ 
P 

(θ,t−i) 
ui 
¡
θ, ŝt−i 

¢ 
pi (θ, t−i|ti). 

3	 Rationalizability in Games of Incomplete Infor-

mation 

There are many notions of rationalizability in Bayesian games, each reflecting a different 

view of these games. 

3.1 Ex-ante Rationalizability 

If one takes an ex-ante view of Bayesian games, the above analysis readily gives a 

definition for rationalizability as follows. 

Definition 17 Given any Bayesian game B = (N,A,Θ, T, u, π) and any player i ∈ N , 

a strategy  si : Ti Ai is said to be ex-ante rationalizable iff si is rationalizable in → 

ex-ante game G (B). 

Ex-ante rationalizability makes sense if there is an ex-ante stage. In that case, ex-ante 

rationalizability captures precisely the implications of common knowledge of rationality 

as perceived in the ex-ante planning stage of the game. It does impose unnecessary 
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restrictions on players’ beliefs from an interim perspective, however. In order to illustrate 

the idea of ex-ante rationalizability and its limitations consider the following example. 

Example 1 Take N = {1, 2}, Θ = {θ, θ0}, T = {t1, t01}×{t2}, p (θ, t1, t2) = p (θ0, t1
0 , t2) =  

1/2. Take also the action spaces and the payoff functions as 

θ L R 

U 1, ε  −2, 0 
D 0, 0 0, 1 

θ0 L R 

U −2, ε  1, 0 

D 0, 0 0, 1 

for some ε ∈ (0, 1). The ex-ante representation of this game is as follows: 

L R 

UU 

UD 

DU 

DD 

−1/2, ε  −1/2, ε  

1/2, ε/2 −1, 1/2 
−1, ε/2 1/2, 1/2 

0, 0 0, 1 

Here, for the strategies of player 1, the first entry is the action for t1 and the second 

entry is the action for t1
0 , e.g., UD (t1) = U and UD (t1

0 ) = D. This game has a unique 

rationalizable strategy profile 

S∞ (G (B)) = {(DU,R)} . 

In computing the rationalizable strategies, one first eliminates UU , noting  that  it  

is dominated by DD, and then eliminates L and finally eliminates UD  and DD. Note  

however that elimination of UU  crucially relies on the assumption that player 1’s belief 

about the other player’s action is independent of player 1’s type. Otherwise, we could 

not eliminate DD. For  example,  if  type  t1 believed player 2 plays L, he  could  play  U as a 

best response, and if type t01 believed player 2 plays R, he  could  play  U as a best response. 

The assumption that the beliefs of types t1 and t01 are embedded in the definition of ex-

ante game. Moreover, the conclusion that (DU,R) is the only rationalizable strategy 

profile crucially relies on the assumption that player 1 knows that player 2 knows that 

player 1’s belief about player 2’s action is independent of player 1’s belief about the 

state. 

From an interim perspective, such invariance assumption for beliefs (and common 

knowledge of it) is unwarranted. Because distinct types of a player correspond to distinct 
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hypothetical situations that are used in order to encode players’ beliefs. There is no 

reason to assume that in those hypothetical situations a player’s belief about the other 

player’s action is independent of his beliefs about the payoffs. (Of course, if it were 

actually the case that player 1 observes a signal about the state without observing a 

signal about the other player’s action and player 2 does not observe anything, then it 

would have been plausible to assume that player 1’s belief about player 2’s action does 

depend on his signal. This is what ex-ante rationalizability captures. This is not the 

story however in a genuine incomplete information.) 

3.2 Interim Independent Rationalizability 

In order to capture the implication of common knowledge of rationality from an interim 

perspective without imposing any restriction on the beliefs of distinct types, one then 

needs to eliminate actions for type in the interim stage. While most contemporary game 

theorists would agree on the relevant notion of ex-ante rationalizability and the relevant 

notion of rationalizability in complete-information games, there is a disagreement about 

the relevant notion of interim rationalizability in incomplete information games. 

One straightforward notion of interim rationalizability is to apply rationalizability to 

interim game AG (B). An embedded assumption on the interim game is however that 

it is common knowledge that the belief of a player i about (θ, t−i), which  is  given  by  

pi (·|ti) is independent of his belief about the other players actions. That is, his belief ³ ´ 
about (θ, t−i, ai) is derived from some belief pi (·|ti)×μti for some μti A

T−i . This  is  ∈ ∆ −i 

because we have taken  the expectations with  respect to  pi (·|ti) in defining AG (B), before  

considering his beliefs about the other players’ actions. Because of this independence 

assumption, such rationalizability notion is called interim independent rationalizability. 

Definition 18 Given any Bayesian game B = (N, A, Θ, T, u, p) and any type ti of player 

i ∈ N , an  action  ai ∈ Ai is said to be interim independent rationalizable (IIR) for ti iff 

ai is rationalizable for ti in interim game AG (B). 

As an illustration, I will next apply interim independent rationalizability to the 

previous Bayesian game. 

Example 2 Consider the Bayesian game in the previous example. The interim game 

AG (B) is 3-player game with player set N̂ = {t1, t10 , t2} with the following payoff table, 
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where t1 chooses rows, t2 chooses columns, and t01 chooses the matrices: 

L R


U : U 1, ε,  −2 −2, 0, 1 
D 0, ε/2, −2 0, 1/2, 1 

L R


D : U 1, ε/2, 0 −2, 1/2, 0 
D 0, 0, 0 0, 1, 0 

(The first entry is the payoff of t1, the second entry is the payoff of t2, and the last entry 

is the payoff of t01.) In AG (B), no strategy eliminated, and all actions are rationalizable 
for all types, i.e., S∞ (AG (B)) = S∞ (AG (B)) = t2 

(AG (B)) ={U, D} and S∞ {L, R}.t1 t01 

For example, for type t1, who  is  a  player  in  AG (B), U is a best response to t2 playing L 

(regardless of what t01 would have played), and U is a best response to t2 playing R. For  

t2, L is a best response to (U, U) and R is a best response to (D, D). 

3.3 Interim Correlated Rationalizability 

As discussed in Remark 1, the fact that two players choose their actions independently 

or does not mean that a third player’s belief about their actions will have a product form. 

In particular, just because all of player j’s information about θ, which is the action of 

the nature, is summarized by tj does not mean the belief of i about the state θ and the 

action of j does not have any correlation once one conditions on tj . Once  again  i might 

find it possible that the factors that affect the payoffs may  also  affect how other players 

will behave given their beliefs (regarding the payoffs). This leads to the following notion 

of rationalizability, called interim correlated rationalizability. 

Iterated Elimination of Strictly Dominated Actions Consider a Bayesian game 

B = (N, A, Θ, T, u, p). For  each  i ∈ N and ti ∈ Ti, set S0 [ti] =  Ai, and define sets Sk [ti]i i 

for k >  0 iteratively, by letting ai ∈ Sk [ti] if and only if i Z 
ai ∈ arg max ui (θ, ai

0 , a−i) dπ (θ, t−i, a−i) 
a0i 

for some π ∈ ∆ (Θ × T−i × A−i) such that 

margΘ×T−i π = pi (·|ti) and π 
¡
a−i ∈ S−

k−
i 
1 [t−i] 

¢ 
= 1. 
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That is, ai is a best response to a belief of ti that puts positive probability only on the 

Sk−1actions that survive the elimination in round k − 1. We  write  S−
k−
i 
1 [t−i] =

Q
j=i j [tj ]Q 6

and Sk [t] = i∈N Si
k [ti]. 

Definition 19 The set of all interim correlated rationalizable (ICR) actions for player 

i with type ti is \∞
Si
∞ [ti] =  Si

k [ti] . 
k=0 

Since interim correlated rationalizability allows more beliefs, interim correlated ra-

tionalizability is a weaker concept than interim independent rationalizability, i.e., if an 

action is interim independent rationalizable for a type, then it is also interim correlated 

rationalizable for that type. When all types have positive probability, ex-ante rationaliz-

ability is stronger than both of these concepts because it imposes not only independence 

but also the assumption that a player’s conjecture about the other actions is independent 

of his type. Since all of the equilibrium concepts are refinements of ex-ante rationaliz-

ability, interim correlated rationalizability emerges as the weakest solution concept we 

have seen so far, i.e., all of them are refinements of interim correlated rationalizability. 

I will present three justifications for using interim correlated rationalizability in gen-

uine cases of incomplete information, which I described in the previous section. First, 

interim correlated rationalizability captures the implications of common knowledge of 

rationality precisely. Second, interim independent rationalizability depends on the way 

the hierarchies are modeled, in that there can be multiple representations of the same 

hierarchy with distinct set of interim independent rationalizable actions. Finally, and 

most importantly, one cannot have any extra robust prediction from refining interim 

correlated rationalizability. Any prediction that does not follow from interim correlated 

rationalizability alone crucially relies on the assumptions about the infinite hierarchy of 

beliefs. A researcher cannot verify such a prediction in the modeling stage without the 

knowledge of infinite hierarchy of beliefs. 

The following example illustrates the second justification. 
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Example 3 Take Θ = {−1, 1}, N = {1, 2}, and  the payoff functions as follows 

θ = 1  a2 b2 c2 θ = −1 a2 b2 c2 

a1 1, 1 −10,−10 −10, 0 
−10,−10 1, 1 −10, 0 
0,−10 0,−10 0, 0 

a1


b1
 b1


c1
 c1 

−10,−10 1, 1 −10, 0 
1, 1 −10,−10 −10, 0 
0,−10 0,−10 0, 0 

Note that this is a coordination game with outside option (ci) where the labels may be 

mismatched (θ = −1). First consider the type space T̂ = 
©¡
t̂1, t̂2 

¢ª 
with p̂

¡
θ = 1, t̂

¢ 
= 

p̂
¡
θ = −1, t̂

¢ 
= −1/2. It is common knowledge that both payoff parameters are equally 

likely. The interim game is the complete information game with the following expected 

payoff vector 
a2 b2 c2 

a1 

b1 

c1 

−9/2,−9/2 −9/2,−9/2 −10, 0 
−9/2,−9/2 −9/2,−9/2 −10, 0 
0,−10 0,−10 0, 0 

Here, ci strictly dominates the other two actions. Therefore, ci is the only interim 

independent rationalizable action. On the other hand, ai is a best respond to belief that 

puts probability 1/2 on (1, aj ) and probability 1/2 on (−1, bj ); bi is a best respond to 
belief that puts probability 1/2 on (−1, aj) and probability 1/2 on (1, bj), and  ci is a 

best respond to belief that puts probability 1/2 on (−1, aj ) and probability 1/2 on (1, aj ). 

Therefore, no action is strictly dominated, showing that S∞ = A. That is, while IIR has 

a unique solution (c1, c2), every outcome is allowed in ICR. 

Now, consider the type space T = {1,−1} 2 with common prior ( 
1/4 if θ = t1 · t2

π (θ, t1, t2) =  
0 otherwise. 

The strategy profile s∗ is a Bayesian Nash equilibrium in the new Bayesian game where 

s∗ (1) = ai and s∗ (−1) = bi,i i 

in addition to the Bayesian Nash equilibrium in which each player plays ci regardless of 

his type. Therefore, all actions are IIR in the new game. This of course implies that 

all actions are ICR in the new game. Note, however, that in this game too each type ti 
assigns 1/2 on θ = 1  and 1/2 on θ = −1, and therefore it is common knowledge that 
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both states are equally likely. That is, the two Bayesian games model the same belief 

hierarchy, while Bayesian Nash equilibria and IIR are distinct in two games. In contrast 

ICR is the same in both games, which is a general fact. 

3.4 Structure Theorem for ICR 

I will now present a structure theorem that establishes that without knowledge of infinite 

hierarchies one cannot refine interim correlated rationalizability. In that in order to verify 

any predictions that relies on a refinement, the researcher has to have the knowledge of 

infinite hierarchy of beliefs. Along the way, I will also discuss upper-hemicontinuity of 

ICR. 

Fix a finite set N = {1, . . . , n} of players and a finite set A of action profiles. Let ³ ´ N 
Θ∗ = [0, 1]A be the space of all possible payoff functions. For any θ = (θ1, . . . , θn) ∈ 

Θ∗, the  payoff of player i from any a ∈ A is ui (θ, a) =  θi (a). Consider the Bayesian 

games with varying finite type spaces (Θ, T, p) with Θ ⊂ Θ∗. Recall that for each ti in Ti, 

we can compute the first-order belief h1 
i (ti) about θ, the second-order belief h

2 
i (ti) about ¡ ¢ 

θ, h1 , and so on, where I suppress the dependence of hi on (Θ, T, p) for simplicity of −i 

notation. The type ti and (Θ, T, p) are meant to model the infinite belief hierarchy 

hi (ti) =  
¡
h1 (ti) , h2 (ti) , . . .  

¢ 
.i i 

We assume that in the modeling stage the researcher can have information only on finite 

orders of beliefs 
¡
hi 
1 (ti) , h2 

i (ti) , . . . , hi
k (ti) 

¢ 
, where  k can be arbitrarily high but finite 

and the information can about these finite orders can be arbitrarily precise (without 

knowing 
¡
h1 
i (ti) , hi 

2 (ti) , . . . , hki (ti) 
¢ 
). If we consider the open sets generated the sets of 

hierarchies such a researcher can find possible, then we obtain the following (point-wise) 

convergence notion: For any sequence ti (m), m ∈ N, coming  from  finite type spaces and 

any type ti, 

ti (m) → ti ⇐⇒ hi
k (ti (m)) → hi

k (ti) ∀ k, (4) 

where hi
k (ti (m)) hi

k (ti) in the usual sense of convergence in distribution (i.e. for → R R 
every bounded, continuous function f , fdhi

k (ti (m)) fdhi
k (ti)).→ 
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3.4.1 Upper-hemicontinuity 

Proposition 2 S∞ is upper-hemicontinuous in t. That is, for any sequence ti (m) and 

any type ti with ti (m)→ ti as in (4), if ai ∈ Si
∞ [ti (m)] for all large m, then  ai ∈ Si

∞ [ti]. 

Note that since A is finite, a sequence a (m) convergence to a if and only if a (m) = m 

for all large m. Hence, the last statement in the proposition states that if ai (m) ai→ 

for some ai (m) ∈ Si
∞ [ti (m)], then  ai ∈ Si

∞ [ti]. To appreciate the result, consider the 

following two implications. 

Fact 1 For any upper-hemicontinuous solution concept F : t 7 F [t] ⊆ A,→ 

1.	 F is invariant to the way hierarchies of beliefs are modeled, i.e., Fi (ti) = Fi for 

any two types ti and t0i with hi (ti) = hi (t
0
i); 

2.	 F is locally constant when the solution is unique, i.e., if F [t] = {a}, then for any 

sequence t (m) t, F [t (m)] = {a} for all large m.→ 

Exercise 3 Prove these facts. 

While upper-hemicontinuity of solution concepts with respect to payoff parameters 

within a simple model is usual, upper-hemicontinuity with respect to beliefs in the 

above sense is unusual because we allow types ti (m) come from different type spaces. 

For example, Example 3 implies that IIR is not upper-hemicontinuous because it is not 

invariant to the way hierarchies are modeled. Indeed, the structure theorem below will 

imply that there is no strict refinement of S∞ that is upper-hemicontinuous. 

The meaning of upper-hemicontinuity to economic modeling is as follows. Con-

sider the researcher above who has noisy information about finite orders of beliefs ¡	 ¢ 
hi 
1 (ti) , hi 

2 (ti) , . . . , hi
k (ti) . Suppose that a type t̂i from some type space T̂ is con-

sistent with her information. Upper-hemicontinuity states that if k is sufficiently high 

and the noise is sufficiently small, then the researcher will be sure that all of the rational-

izable actions of the actual type is in Si
∞ 
£ 
t̂i
¤
.  That is,  the predictions  of  the ICR  for  t̂i 

(i.e. the propositions that are true for all actions in Si
∞ 
£ 
t̂i
¤
) remain  true even  if there  is  

a small misspecification of interim beliefs due to lack of information,and the researcher 

can validate these predictions. I will call such predictions robust to misspecification 

of interim beliefs. The structure theorem implies the converse of the above statement, 

showing that the only robust predictions are those that follow rationalizability alone. 
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3.4.2 Structure Theorem 

Theorem 3 (Structure Theorem) For any finite t̂i and any ai ∈ Si
∞ 
£ 
t̂i
¤
, there  exists  

a sequence of types ti (m) from finite models converging to t̂i such that Si
∞ [ti (m)] = {ai}. 

Moreover, every open neighborhood of ti contains an open neighborhood on which ai is 

the only rationalizable action.  

The first statement states that any rationalizable action ai can be made uniquely ra-

tionalizable by perturbing the interim beliefs of the type. Since ICR is upper-hemicontinuous, 

the previous fact implies that  ai remains the unique rationalizable action under further 

small perturbations. That is, ai remains as the unique rationalizable action over an open 

neighborhood of the perturbed type. This leads to the last statement of the structure 

theorem. 

In order to spell out the implications of the structure theorem for economic modeling, 

consider the researcher above, who can observe arbitrarily precise noisy signal about 

arbitrarily high but finite orders of beliefs. There are infinitely many types from various 

type spaces that are consistent with information. Suppose that she chooses to model the 

situation by one of these types, denoted by t̂i. Note that the set of possible types that is 

consistent with her information leads to an open neighborhood of t̂i. Consider  any  ai that 

is rationalizable for t̂i. The structure theorem states that the set of alternatives types 

has an open subset  on which  ai is uniquely rationalizable. Hence, she cannot rule out 

the possibility that ai is the unique solution in the actual situation or in the alternative 

models that are consistent with her information. Moreover, if ai is uniquely rationalizable 

in the actual situation, she could have learned that the actual situation is in the open 

set on which ai is uniquely rationalizable by obtaining a more precise information about 

higher orders of beliefs. Therefore, she could not rule out the possibility that she could 

have actually verify that ai is the unique ICR action. 

Now suppose that the researcher uses a particular non-empty refinement Σ of ICR as 

her solution concept. Since Σ has to prescribe ai to ti when ai is uniquely rationalizable 

for ti, and since she cannot rule out the possibility that ai is uniquely rationalizable, 

she cannot rule out the possibility that her solution concept prescribes ai as the unique 

solution. Hence, in order to verify a prediction of her refinement,  it must be the  case  

that her prediction holds for ai. Since  ai is an arbitrary ICR action, this implies that 

the only predictions of her solution concept that she can verify are those that she could 
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have made without refining ICR. 

Exercise 4 Using the structure theorem, show that S∞ does not have an upper-hemicontinuous 

non-empty strict refinement, i.e., if F is non-empty, upper-hemicontinuous and F [t] ⊆ 

S∞ [t] for all t, then  F = S∞. 

The proof of the structure theorem is based on a generalized "contagion" argument. 

I will illustrate the idea of contagion on a well-known example, called the E-mail Game. 

We will see another application of contagion in global games. 

Example 4 Consider a two-player game with the following payoff matrix 

Attack No Attack 

Attack 

No Attack 

θ, θ θ − 1, 0 

0, θ − 1 0, 0 © ª 
where θ ∈ Θ = {−2/5, 2/5, 6/5}. Write T = tCK (2/5) for the model in which it is 

common knowledge that θ = 2/5. This is a typical coordination game, which is called 

the Coordinated-Attack Game. In this game there are two pure-strategy equilibria, one 

in which each attack and obtain the payoff of 2/3, and one in which nobody attacks, each 

receiving zero. Pareto-dominant Nash equilibrium selects the former equilibrium. Now 

imagine an incomplete information game in which the players may find it possible that 

θ = −2/5. Ex ante, players assign probability 1/2 to each of the values −2/5 and 2/5. 
Player 1 observes the value of θ and automatically sends a message if θ = 2/5. Each  

player automatically sends a message back whenever he receives one, and each message 

is lost with probability 1/2. When a message is lost the process automatically stops, and 

each player is to take one of the actions of Attack or No Attack. This game can be 

modeled by the type space T̃ = {−1, 1, 3, 5, . . .} × {0, 2, 4, 6, . . .}, where  the type  ti is the 

total number of messages sent or received by player i (except for type t1 = −1 who knows 
that θ = −2/5), and the common prior p on Θ×T̃ where p (θ = −2/5, t1 = −1, t2 = 0) =  

1/2 and for each integer m ≥ 1, p (θ = 2/5, t1 = 2m− 1, t2 = 2m− 2) = 1/22m and 

p (θ = 2/5, t1 = 2m− 1, t2 = 2m) = 1/22m+1 . Here, for k ≥ 1, type  k knows that θ = 

2/5, knows that the other player knows θ = 2/5, and so on through k orders. Now, type 

t1 = −1 knows that θ = −2/5, and hence his unique rationalizable action is No Attack. 

Type t2 = 0  does not know θ but puts probability 2/3 on type t1 = −1, thus  believing  
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that player 1 will play No Attack with at least probability 2/3, so that No Attack is the 

only best reply and hence the only rationalizable action. More interestingly, type t1 = 1  

knows that θ = 2/5, but his unique rationalizable action is still No Attack. Although 

he knows that θ = 2/5, he does not know that player 2 it. He assigns probability 2/3 

to type 0, who does not know that θ = 2/5, and probability 1/3 to type 2, who knows 

that θ = 2/5. Since  type  0 plays No Attack in his unique rationalizable action, under 

rationalizability, type 1 assigns at least probability 2/3 that player 2 plays No Attack. 

As a unique best reply, he plays No Attack. Applying this argument inductively for each 

type k, one concludes that the new incomplete-information game is dominance-solvable, 

and the unique rationalizable action for all types is No Attack. 

If we replace θ = −2/5 with θ = 6/5, we obtain another model, for which Attack 

is the unique rationalizable action. We consider type space Ť = {−1, 1, 3, 5, . . .} ×  

0, 2, 4, 6, . . .} and the common prior q on Θ × T where q (θ = 6/5, t1 = −1, t2 = 0) =  { ˇ

2m1/2 and for each integer m ≥ 1, q (θ = 2/5, t1 = 2m− 1, t2 = 2m− 2) = 1/2 and 

q(θ = 2/5, t1 = 2m − 1, t2 = 2m) = 1/22m+1 . One can easily check that this game is 

dominance-solvable, and all types play Attack. 

Note that for k > 0, type  k knows that it is  kth-order mutual knowledge that θ = 2/5, 

but he does not know if the other player knows this, assigning probability 2/3 to the 

type who only knows that it is k − 1th-order mutual knowledge that θ = 2/5. While 

the interim beliefs of the types with low k differ substantially from those of the common 

knowledge type,  the beliefs  of  the types  with  sufficiently high k are indistinguishable from 

those of the common knowledge type according to the researcher above. But it is the 

behavior of those far away types that determines the behavior of the indistinguishable 

types; the unique behavior of k = −1, determines a unique behavior for k = 0, which  

in turn determines a unique behavior for k = 1, which in turn determines a unique 

behavior for k = 2 . . . up to arbitrarily high orders. This is called contagion. The 

proof of Structure Theorem is based on a very general contagion argument. We will see 

another application of contagion in global games. 
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4 Notes on Literature 

For complete information games, rationalizability has been introduced by Bernheim 

(1985) and Pearce (1985) in their dissertations. They have in addition assumed that 

the beliefs do not put correlation between different players’ strategies. Aumann (1987) 

introduced the formulation of epistemic model for strategies and characterization of the 

solution concept in terms of rationality assumptions within the context of correlated 

equilibrium (under the common-prior assumption). The analysis of epistemic founda-

tions of solution concepts in the more general set up is due to Tan and Werlang (1988), 

who have also formally proved that rationalizability captures the strategic implications 

of common-knowledge of rationality. (The arguments of Bernheim (1985) and Pearce 

(1985) were less formal; see also Brandenburger and Dekel (1987)). 

Modeling hierarchies of beliefs through type spaces is proposed by Harsanyi (1967). 

The formalization of hierarchies is due to Mertens and Zamir (1985) and Brandenburger 

and Dekel (1993). 

Battigalli (1998) has an extensive discussion of rationalizability concepts in incomplete-

information games. The formulation of interim-correlated rationalizability is due to 

Dekel, Fudenberg, and Morris (2007), who also proved the upper-hemicontinuity of ICR. 

This paper also contains a characterization of common knowledge of rationalizability in 

terms of ICR, extending the characterization in the complete information games to 

Bayesian games. Example 3 is taken from Ely and Peski (2006). 

The e-mail game is due to Rubinstein (1989). In this example Rubinstein demon-

strated that efficient equilibrium of (Attack, Attack) is sensitive to the specification of 

higher order beliefs. This was the first application of contagion argument to the best 

of my knowledge. Kajii and Morris (1987) contain some more general applications of 

contagion. 

The Structure Theorem is due to Weinstein and Yildiz (2007). Chen (2008), Penta 

(2008), and Weinstein and Yildiz (2009) extend the structure theorem to dynamic 

games. Penta (2008) also characterizes the robust predictions under arbitrary common-

knowledge restriction on who knows which parameter. Weinstein and Yildiz (2008) 

characterizes the robust predictions of equilibrium in nice games (with convex action 

spaces, continuous utility functions and unique best replies) under arbitrary common-

knowledge restrictions on payoffs. See also Oury and Tercieux (2007) for an interesting 
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mechanism design application with small payoff perturbations. 

In response to Rubinstein (1989), Monderer and Samet (1989) explored the notion of 

closeness to the common knowledge in the sense that the equilibrium behavior remains 

similar. They have shown that common knowledge is approximated in this strategic 

sense by their concept of common p-belief : every player assigns at least probability 

p to the event F , every player assigns at least probability p to the event that every 

player assigns at least probability p to the event F . . .  up  to  infinity. Given any strict 

equilibrium of a common knowledge game, if the game is common p-belief for sufficiently 

high p under a perturbation, then the equilibrium remains approximate equilibrium in 

the perturbed game. The idea of common p-belief has been very useful. Several recent 

papers explored the idea of strategic closeness using this concept (e.g., Dekel, Fudenberg, 

and Morris (2006), Ely and Peski (2008), Chen et al (2010)). 
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