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Road Map 
� Definitions: lattices, set orders, supermodularity… 
� Optimization problems 
� Games with Strategic Complements 

� Dominance and equilibrium


� Comparative statics


2 

1 



Two Aspects of Complements 

� Constraints 
� Activities are complementary if doing one enables doing the 

other… 
� …or at least doesn’t prevent doing the other. 

� This condition is described by sets that are sublattices. 
� Payoffs 

�	 Activities are complementary if doing one makes it weakly more 
profitable to do the other… 
� This is described by supermodular payoffs. 

�	 …or at least doesn’t change the other from being profitable to 
being unprofitable 
� This is described by payoffs satisfying a single crossing condition. 
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Example – Peter-Diamond search model 

BR(a-i) 
� A continuum of players 
� Each i puts effort ai, costing 

ai 
2/2; 

� Pr i finds a match = aig(a-i), θg(a-i) 
� a-i is average effort of 

others 
� The payoff from match is θ. 

Ui(a) = θaig(a-i) – ai 
2/2 

� Strategic complementarity: 
BR(a-i) = θg(a-i) 

a-i 

θ’ >  θ 
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Definitions: “Lattice” 
�	 Given a partially ordered set (X,≥), define 

� " join " : x ∨ = inf {z ∈ X | z ≥ , ≥ }The y x z y . 
� " meet  " : x y  sup {z ∈ X | z ≤ , ≤ }.The ∧ = x z y  

� (X,≥) is a “lattice” if it is closed under meet and join: 

(∀  ∈ X ) x y , ∨ ∈  x,y ∧ ∈  X x  y  X  

�	 Example: X = RN, 

x ≥ y if x ≥ y i  , = 1,..., Ni i 

(x ∧ y )i = min( xi ,yi ); i = 1,..., N 
(x ∨ y )i = max( xi ,yi ); i = 1,..., N 
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Definitions, 2 

�	 (X,≥) is a “complete lattice” if for every non-empty subset S, a 
greatest lower bound inf(S) and a least upper bound sup(S) 
exist in X. 

�	 A function f : XÆR is “supermodular ” if  

(∀  ∈, X f x  ) ( )  + ( )  ≤ f x  y  ) f (x y )x y  f y  ( ∧ +  ∨  

� A function f is “submodular” if –f is supermodular. 

� (if X = R, then f is supermodular.)
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Complementarity 
�	 Complementarity/supermodularity has 

equivalent characterizations: 
� Higher marginal returns 

(x ∨ y ) − f ( )  ≥ ( )  − f (x ∧ yf  x f y  ) 

y x∨y 
differences 

� Nonnegative mixed second  

[f (x ∨ y ) − ( )  ] − ( )  − f (x ∧ y )] ≥f x  [f y  0 x 
� For smooth objectives, non-negative 

mixed second derivatives: 

x∧y 

∂2f 
≥ 0 for i ≠ j

∂ ∂x xi	 j 
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Definitions, 3

� Given two subsets S,T⊂X, “S is as high as T,” written S≥T, 

means 
[x∈S & y∈T] ⇒ [x ∨ y ∈ S & x ∧ y ∈ T] 

� A function x* is “isotone” (or “weakly increasing”) if 
t ≥ t’ ⇒ x*(t) ≥ x*(t’) 

� A set S is a “sublattice” if S≥S. 
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Sublattices of R2
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Not Sublattices 
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“Pairwise” Supermodularity/Increasing 
differences 
� Let f :RNÆR. f is pairwise supermodular (or has increasing 

differences) iff 
� for all n≠m and x-nm, the restriction f (.,.,x-nm):R2ÆR is 

supermodular. 
� Lemma: If f has increasing differences and xj ≥ yj for each j, then 

f(xi,x-i) – f(yi,x-i) ≥ f(xi,y-i) – f(yi,y-i). 
� Proof: 

f (x1,x−1 ) − f (x1,y−1 ) 
= ∑ j >1

f (x1,x2,..., x j ,y j +1,...,yn ) − f (x1,x2,..., x j −1,y j ,...,yn ) 

≥ ∑ j >1 
f (y1,x2,..., x j ,y j +1,...,yn ) − f (y1,x2,..., x j −1,y j ,...,yn ) 

= f (y1,x−1 ) − f (y1,y−1 ) 
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Pairwise Supermodular = Supermodular 

� Theorem (Topkis). Let f :RNÆR. Then, f is supermodular if and only if f 
is pairwise supermodular. 

� Proof: 
� ⇒ by definition. 
� ⇐ Given x,y, 

f (x ∨ y ) − f (y ) 
= ∑i

f (x1 ∨ y1,..., xi ∨ yi ,yi +1,...,yn ) − f (x1 ∨ y1,..., xi −1 ∨ yi −1,yi ,...,yn ) 

= ∑i
f (x1 ∨ y1,..., xi −1 ∨ yi −1,xi ,yi +1,...,yn ) − f (x1 ∨ y1,...,xi −1 ∨ yi −1,xi ∧ yi ,yi +1,...,yn ) 

≥ ∑ f (x1,..., xi −1,xi ,xi +1 ∧ yi +1,..., xn ∧ yn ) − f (x1,...,xi −1,xi ∧ yi ,xi +1 ∧ yi +1,..., xn ∧ yn )i 

= f (x) − f (x ∧ y ) 

QED 
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Supermodularity in product spaces 

� Let X = X1 ×X2 ×… × Xn, f : X → R. 
� Then, f is supermodular iff 
� For each i, the restriction of f to Xi is supermodular 
� f has increasing differences. 
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“Pairwise” Sublatices 
� Theorem (Topkis). Let S be a sublattice of RN. Define 

NSij = {x ∈ℜ  | (∃z ∈ S ) xi = zi ,x j = zj } 
Then, S = I i j, 

Sij . 
� Remark. Thus, a sublattice can be expressed as a collection of 

constraints on pairs of arguments. In particular, undecomposable 
constraints like 

x1 + x2 + x3 ≤ 1 

can never describe in a sublattice. 
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Monotonicity Theorem 

�	 Theorem (Topkis). Let f :X×R ÆR be a supermodular function 
and define 

x * ( )t ≡ argmax  f (x t  ,  ).  
∈ ( )x S t  

If t ≥t’ and S (t ) ≥ S (t’ ), then x*(t ) ≥ x*(t’ ). 
�	 Corollary. Let f :X×R ÆR be a supermodular function and 

suppose S (t) is a sublattice. Then, x* (t ) is a sublattice. 
�	 Proof of Corollary. Trivially, t ≥t, so S (t ) ≥ S (t ) and  x*(t ) ≥ 

x*(t ). QED 
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t = 0,1Example	 S(0) = [0,2] 
S(1) = [a,a+2] 
∂f(x,0)/∂x < ∂f(x,1)/∂x 

f(.,0) 

f(.,1) 

0 1 2 3 X 
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Proof of Monotonicity Theorem

* * *�	 [t ≥t’, S (t ) ≥ S (t’ ) ⇒ x (t ) ≥ x (t’ ), where x (t )=argmaxx∈S(t)f(x,t)] 

�	 Suppose that f is supermodular 
* * x∈ ( ), ′∈ x t  t  ′and that x t  x  ( ), t ′. 

� 
′ ′ ′Then, ( x ∧ x )∈S t  ( ),( x ∨ x )∈S t  ( )


So, ( f x t  , ) ≥ ( ∨ ′ f x t  ′ ′) ≥ f x  ∧ ,
f x  x t  , ) and ( , ( x t′ ′). 

�	 If either any of these inequalities are strict then their sum 
contradicts supermodularity: 

+ ( ′ ′) ( ∧ x t′ ′  ) ( ∨ x t( , )  ,  > f x  , + f x  ′f x t  f x t 	 ,  ).  

QED 
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Application: Pricing Decisions 
�	 A monopolist facing demand D (p,t) produces at unit cost 

c. 
p *(c,t) = argmaxp (p – c)D(p,t) 

= argmaxp log(p – c) + log(D(p,t)) 

�	 p *(c,t ) is always isotone in c. 
�	 p *(c,t ) is isotone in t if log(D (p,t)) is supermodular in (p,t), 

� i.e. supermodular in (log(p),t), 

�	 i.e. increases in t make demand less elastic: 

∂ log ( , ) D p t  nondecreasing in t 
∂ log( ) p 
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Application: Auction Theory 
�	 A firm’s value of winning an item at price p is U(p,t),

where t is the firm’s type. (Losing is normalized to 
zero.) A bid of p wins with probability F(p). 

�	 Question: Can we conclude that p(t) is

nondecreasing, without knowing F?


* ( ) = argmax U  p t F  p  ( , ) ( ) p tF p 

(	 ( , ) ) + log ( ) )= argmaxlog U p t  (F p  
p 

�	 Answer: Yes, if log(U (p,t)) is supermodular. 
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Application: Production Theory 

�	 Problem: 
( , ) − ( , ) − K k r  max pf k l  L l w  ( , )

k l, 

� Suppose that L is supermodular in the natural order, 
for example, L(l,w)=wl. 
� Then, -L is supermodular when the order on l is 

reversed. 
� l*(w) is nonincreasing in the natural order. 

� If f is supermodular, then k*(w) is also nonincreasing. 
� That is, capital and labor are “price theory

complements.” 
� If f is submodular, then capital and labor are “price 

theory substitutes.” 
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Convergence in Lattices 

� Consider a complete lattice (X,≥). 
� Consider a topology on X in which 
� For any sequence (xm)m>0 with xm ≥ xm+1 ∀m, 

xm → inf { xm : m > 0} 
� For any sequence (xm)m>0 with xm+1 ≥ xm ∀m, 

xm → sup { xm : m > 0} 
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Introduction to 
Supermodular Games 
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Formulation 
A game (N, S, U) is supermodular if 
� N players (infinite is okay) 
� Strategy sets (Xn , ≥n) are complete lattices 

= min , = max Xx X x � n n n n 

�	 Payoff functions Un(x) are

� continuous


�	 supermodular in own strategy and has increasing 
differences with others’ strategies 

( n)(  ∀ n, ′ ∈ Xn )(∀ ≥ x−′ n X )∀ x x  n x−n ∈ −n 

U x  U x  ( )  + ( ′) ≤ ( ∧ ′) + ( ∨ ′U x x  U x x  )n n n n 
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Bertrand Oligopoly Models 
�	 Linear/supermodular Oligopoly: 

Demand: ( ) = − 
≠ 

xQ x  A ax + bn n ∑ j n j  j  

U x( )  ( − ) ( )Profit: = x  c Q x  n n n n 

∂Un =	 m( n − n ) which is increasing in xnb x  c  
∂xm 
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Linear Cournot Duopoly 
� 

Inverse Demand: ( ) = − 1 2P x  −A x  x  
U x = x ( )  − ( )( )  P x  C x  n n n n 

∂Un = −x

∂x n


m 

�	 Linear Cournot duopoly (but not more general oligopoly) is 
supermodular if one player’s strategy set is given the reverse of 
its usual order. 
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Analysis of Supermodular Games 

�	 Extremal Best Reply Functions 

( )  = max  argmax  U x x  ( ′ , )n	 n n −nB x  (	 )′ ∈x X  n	 n 

( ) ( U x x  , ))b x = min argmax ( ′ n	 n n −n′ ∈x X  n	 n 

� By Topkis’s Theorem, these are isotone functions. 

� Lemma: 


[x	 ≥ b x ]⇒ x  is strictly dominated by ( ) ∨ x ]¬ ( ) [	 b xn n n	 n n 

�	 Proof. 

If ¬[x ≥ ( ) , then ]b xn n 

Un (xn ∨ bn (x),x−n ) −Un (xn,x−n ) ≥ Un(bn(x),x−n)−Un(xn ∧bn(x),x−n) > 0 

Supermodularity + 
increasing differences 26 
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Rationalizability & Equilibrium 

�	 Theorem (Milgrom & Roberts): The smallest
rationalizable strategies for the players are given by 

= lim bk ( ) z x 
k→∞ 

Similarly the largest rationalizable strategies for the 
players are given by 

= lim Bk ( ) z x 
k→∞ 

Both are Nash equilibrium profiles. 

�	 Corollary: there exist pure strategy Nash equilibria z 
and z s.t. 
� For each rationalizable x, z ≥ x ≥ z. 
� For each Nash equilibrium x, z ≥ x ≥ z. 
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Partnership Game

� Two players; employer (E) and worker (W) 
� E and W provide K and L, resp. 
� Output: f(K,L) = KαLβ, 0 < α,β,α+β < 1. 
� Payoffs of E and W: 

f(K,L)/2 – K, f(K,L)/2 – L. 

28 
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Rationalizable 

L 

K 

K* 

L* 

Proof 
� bk(x) is isotone and X is complete, so  limit z of bk(x) exists. 
� By continuity of payoffs, its limit is a fixed point of b, and hence a 

Nash equilibrium. 
� xn ≥ zn ⇒ xn ≥ bn 

k(x) for some k, and hence xn is deleted during 
iterated deletion of dominated strategies. 

� QED 
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Comparative Statics 
�	 Theorem. (Milgrom & Roberts) Consider a family of 

supermodular games with payoffs parameterized by t. 
Suppose that for all n, x-n, Un(xn,x-n;t) is supermodular in (xn,t).
Then ( ), ( ) are isotone.z t z t 

� Proof. By Topkis’s theorem, bt(x) is isotone in t. Hence, if t >t’, 
k kb x ( )  ≥ b x ( )t t′ 

( ) = lim t
k ( ) ≥ lim t

k 
′ ( ) ≥ ( ) ′z t  b x  b x  z t  

k→∞ k→∞ 

and similarly for  z. QED 
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Example – partnership game K 

L
32 

� f(K,L) = tKαLβ, 

K* 

L* 
t’ > t 
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Example – Peter-Diamond search model 

R(a-i) 
� A continuum of players 
� Each i puts effort ai, costing 

ai 
2/2; 

� Pr i finds a match aig(a-i), θg(a-i) 
� a-i is average effort of 

others 
� The payoff from match is θ. 

Ui(a) = θaig(a-i) – ai 
2/2 

� Strategic complementarity: 
R(a-i) = θg(a-i) 

a-i 

θ’ >  θ 
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Monotone supermodular games of 
incomplete information 
� G = (N,T,A,u,p)

� T = T0 × T1 × … × Tn (⊆ RM)

� Ai compact sublattice of RK


� ui : A × T → R

� ui(a,.): T → R is measurable 
� ui(. ,t): A → R is continuous, “bounded”, supermodular in ai, 

has increasing differences in a 

� p(.|ti) is increasing function of ti—in the sense of 1st-
order stochastic dominance (e.g. p is affiliated). 
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Theorem (Monotone Equilibrium) 

�	 There exist Bayesian Nash equilibria s and s 
such that 
� For each BNE s, s ≥ s ≥ s; 
� Both s and s are isotone. 
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