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A common exercise in economics is to understand how a particular outcome varies 

qualitatively varies with a particular parameter, e.g., whether income tax increases the 

investment level in equilibrium. When one can answer such a question, the is often 

driven by a supermodularity (or complementarity) assumption. In these lectures, I will 

formally introduce supermodular games and the mathematics used in their analysis. 

Complementarities are expresses both in terms of constraints and payoff functions. 

In terms of constraints, two activities are complementary if doing one activity more 

does not reduce the possible activity level for the other activity. This is mathematically 

captured by lattices. In  terms  of  payoffs, two activities are complementary if doing one 

activity more increases the marginal benefit of doing  the other.  This is mathematically  

captured by supermodular payoff functions. 

The main result in these lecture will establish the structure of the maximizing solu­

tions and monotone comparative statics under complementarity both in terms of con­

straints and payoff function. For the individual decision problems, the result establishes 

that the set of solutions is a lattice and weakly increasing in complementary parame­

ters. For games, the result establishes that there are extremal pure strategy equilibria 

that bound all rationalizable strategies, and the extremal equilibria are monotone with 

respect to complementary parameters. 



1 Example  

As a concrete example of the forthcoming example consider the Diamond’s search model. 

There is a continuum of players. Each player i puts effort ai ∈ [0, 1], incurring a cost of 

a2/2. Let  ā−i be the average effort level for the players other than i. The probability that i 

i finds a match is aig(ā−i) for some increasing, continuous function g : [0, 1] g [0, 1]→ 

with g (0) = 0 and g (1) = 1. Let  the  payoff from match be θ ≥ 0. Then, the expected 

payoff of player i is 

Ui(a) =  θaig(ā−i) − ai 
2/2. 

We have strategic complementarity (i.e. the complementarity between the strategies) 

because an increase in ā−i always results in a (weakly) increase in the ∂Ui/∂ai. This  

results in an increasing best-response function 

BRi (a−i) =  θg(ā−i). 

Similarly, there is a complementarity between the search level ai and the value θ of 

match: ∂2Ui/∂ai∂θ = g (ā−i) ≥ 0. Once again the best response is increasing in θ. 

Consider the equilibria of the above game. Note that, since the best response function 

is increasing and the payoffs are symmetric, every equilibrium is symmetric. Equilibria 

are then characterized by the intersection of the graph of g with the diagonal, as in 

Figure 1. 

In this figure, there are three equilibria, all of the equilibria are ordered. Among 

these the smallest equilibrium, located at the origin, and the largest equilibrium are 

stable, the middle equilibrium is unstable. While the number of equilibria depends on 

the shape of g, the equilibria will always be ordered (because g and the diagonal are 

increasing), and we will have extremal equilibria. The latter is indeed a general property 

of supermodular games. 

In order to investigate how the equilibrium search levels vary by the complementary 

parameter of the value of the match, increase θ to a higher level θ0. Since this corrosions 

to scaling up the best response function (by θ0/θ), the new equilibria are formed as in 

the figure. The smallest equilibrium remains at zero (weakly increasing). The largest 

equilibrium moves up. These changes are intuitive in that we would expect the players 

to search more when the match is more valuable. This will indeed be generally true for 

all supermodular games. Note however that the middle equilibrium, which is unstable, 
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Figure 1: Equilibria in Diamond’s search model 

decreases, so that the players search less when the match is more valuable. This shows 

that the intuition is true only for the extreme equilibria, and one should keep this 

counterexample in mind throughout. 

Finally, note that the largest equilibrium moves more than individual best responses, 

i.e., a∗ 
i [θ

0] > BRi (a
∗ 
i [θ] , θ

0), where  ai 
∗ [θ] and a∗ 

i [θ
0] are the equilibrium strategies under 

θ and θ0, respectively. That is, there is a multiplier effect. Although I will not explore 

this issue in these notes, this is also true under broad conditions. 

2 Lattices and Supermodularity 

This section presents the basic concepts in lattice theory. 

2.1 Lattices 

A partially-ordered set is said to be lattice if each doubleton subset has greatest lower 

bound (inf) and smallest upper bound (sup). 
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Definition 1 A partially-ordered set (X,≥ ) is said to be lattice iff for all x, y ∈ X, 

x ∨ y ≡ inf {z ∈ X|z ≥ x, z ≥ y} ∈ X 

x ∧ y ≡ sup {z ∈ X|x ≥ z, y ≥ z} ∈ X. 

Here, operators ∨ and ∧ are called join and meet, respectively. Note that x∨ y ∈ X 

is such that x ∨ y ≥ x, x ∨ y ≥ y, and  moreover  if  z ≥ x and z ≥ y, then  z ≥ x ∨ y. 

That is, x ∨ y is the smallest upper bound for {x, y}. Similarly, x ∧ y is the greatest 

lower bound for {x, y} in the sense that x ≥ x ∧ y, y ≥ x ∧ y, and  if  x ≥ z and y ≥ z, 

then x ∧ y ≥ z. 

Example 1 Let X = 2S be  all the  set of all  subsets  of a  set  S, and order X by set 

inclusion, i.e., A ≥ B ⇐⇒ A ⊇ B. For any A,B ∈ X, note that A ∪ B ⊇ A, 

A∪ B ⊇ B and if C ⊇ A and C ⊇ B, then  C ⊇ A∪ B. Therefore,  A∨ B = A∪ B ∈ X. 

Similarly, A ∧ B = A ∩ B ∈ X. Therefore,  (X,⊇ ) is a lattice. 

Example 2 Endow Rn with the usual coordinate-wise order: 

(x1, . . . , xn) ≥ (y1, . . . , yn) xi ≥ yi ∀ i.⇐⇒ 

(Rn ,≥ ) is a lattice with 

x ∨ y = (max  {x1, y1} , . . . ,max {xn, yn}) 

x ∧ y = (min  {x1, y1} , . . . ,min {xn, yn}) . 

Definition 2 A lattice (X,≥ ) is said to be complete if for every S ⊆ X, a  greatest  lower  

bound inf(S) and a least upper bound sup(S) exist in X, where  inf (∅) = sup (X) and 
sup (∅) = inf (X). 

Note that, in the above examples, 
¡
2S 

¢ 
is complete because for any family Aα ⊆ S,,⊇ 

∨ αAα = ∪ αAα ∈ 2S and ∧ αAα = ∩ αAα ∈ 2S . On the other hand, (Rn ,≥ ) is not complete 

because sup (Rn) does not exist. 

2.2 Strong Set Order and Sublattices 

Given a lattice (X,≥ ), one can extend the order ≥ to subsets of X as follows. 
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Definition 3 (Strong Set Order) Given any lattice (X, ≥ ), for  any  A, B ⊆ X, 

A ≥ B ⇐⇒ [x ≥ y ∀ x ∈ A, y ∈ B] . 

With the usual order on R, note  that  {1, 2, 3, 4} ≥ {0, 1, 2, 3} but {1, 2, 3, 4} 6≥ 

{− 0.5, 0.5, 1, 5, 2, 5}. This is a very strong notion of order as it implies many other 

natural orders on sets. For example, if A ≥ B, then  max A ≥ max B and min A ≥ min B. 

A lattice may have a subset that is a lattice in itself according to original order. Such 

subsets are called sublattices. 

Definition 4 Given any lattice (X, ≥ ), any  S ⊆ X is said to be sublattice if for any 

x, y ∈ S, x ∨ y ∈ S and x ∧ y ∈ S. 

The following gives an equivalent definition for sublattices. 

Fact 1 Given any lattice (X, ≥ ) and any S ⊆ X, S is a sublattice iff S ≥ S. 

For example, under the usual order, S = {(x1, x2) :  x1 + x2 ≤ 1} is not a sub-
lattice of R2 because (1, 0) ∨ (0, 1) = (1, 1) 6∈ S. On the other hand, [0, 1]2 and 

S0 = {(x1, x2) :  x1 − x2 ≤ 1} are sublattices. 

2.3 Functions on Lattices – Supermodularity 

I will next introduce important properties of functions to or from lattices. The first 

property is an elementary monotonicity property, requiring that the order is preserved. 

Definition 5 Given any partially ordered sets (T,  ≥ ) and (X, ≥ ), a function f : T → X 

is said to be isotone (or weakly increasing) if  

t ≥ t0 ⇒ f (t) ≥ f (t0) . 

Throughout the lecture, we will take t to be a parameter and investigate how it 

effects the outcomes according to a solution concept. Since our solution concepts, such 

as argmax and Nash equilibrium, are set valued the above definition will be often applied 

to set-valued functions. Note that, for any lattice (Y, ≥ ), 
¡
2Y 

¢ 
is a partially ordered , ≥ 

set (with the strong set order). 

The second property formalizes the idea of complementarity in terms of functions: 
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Definition 6 Given any lattice (X,≥), a  function  f : X → R is said to be supermod­

ular if for all x, y ∈ X, 

f (x ∨ y) +  f (x ∧ y) ≥ f (x) +  f (y) . 

A function f is said to be submodular if −f is supermodular. 

Note that if X is linearly ordered (as R), then every function f : X R is super­→ 

modular as the  above inequality is vacuously  satisfied as equality. 

When X = X1 × X2, ordered coordinate-wise, supermodularity captures the idea 

of complementarity between X1 and X2 precisely. Indeed, if we take x = (x1, x2) and 

y = (y1, y2) with x1 ≥ y1 with y2 ≥ x2, we  have  x∨y = (x1, y2) and x∧y = (y1, x2).Then, 

we can write the inequality in the definition of supermodularity as 

f (x1, y2) − f (x1, x2) ≥ f (y1, y2) − f (y1, x2) . 

That is, the marginal contribution of increasing the second input from x2 to y2 increases 

when we increase the first input from y1 to x1. That is, marginal contribution of an input 

is increasing with the other input, capturing the usual meaning of complementarity (as 

in production theory). 

One can also withe the above inequality as a condition on the mixed differences: 

[f (x1, y2) − f (x1, x2)] − [f (y1, y2) − f (y1, x2)] ≥ 0. 

This condition reduces to a usual restriction on the cross-derivatives for smooth functions 

on R2: 
∂2f ≥ 0. 

∂x1∂x2 

Supermodularity turns out to be closely related to the monotone comparative statis­

tics, an ordinal property. Despite this, note that supermodularity is a cardinal property, 

as it is not preserved under monotone transformation, as the next example illustrates. 

Example 3 Let X = {0, 1} 2 and endow it with the usual order. Consider the following 

supermodular function: 

f (1, 1) = 3, f (1, 0) = f (0, 1) = 1, f (0, 0) = 0. 

Note that 
√
f is not supermodular. 
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2.4 Increasing Differences and Supermodularity in Product Spaces 

In game theoretical applications, the lattices are of the product form as the space of 

strategy profile is a product set. In such lattices supermodularity reduces to a simpler 

condition. 

For a family of lattices (X1,≥) , . . . , (Xn,≥), let  X = X1 × · · ·  ×  Xn and endow X 

with the coordinate-wise order (i.e., (x1, . . . , xn) ≥ (y1, . . . , yn) iff xi ≥ yi for each i). 

For x ∈ X and any i and j, define x−ij = (xk)k 6∈{i,j}. For  any  function  f : X → R, define 
f (·|x−ij) : Xi × Xj → R by setting f (xi, xj|x−ij ) = f (xi, xj, x−ij ). Note  that  f (·|x−ij ) 
is the restriction of f to vectors where the entries other than i and j are fixed at x−ij. 

Definition 7 A function f : X R is said to have increasing differences iff for any ¡ ¢ → 

i, j, x−ij, xi, xi
0 , xj , x

0
j , £ ¤ ¡ ¢ ¡ ¢ 

xi ≥ xi
0 and xj ≥ xj

0 ⇒ f (xi, xj, x−ij )−f (x0i, xj , x−ij) ≥ f xi, x
0
j, x−ij −f xi

0 , x0j, x−ij . 

That is, ceteris peribus, the marginal contribution of ith entry (obtained by changing 

x0i to higher xi) is higher when the jth entry is fixed at the higher level of xj rather than 

x0j . When  X = Rn, the condition of increasing differences can be called pair-wise super-

modularity, because the above condition can be written as a supermodularity condition 

on function f (·|x−ij) : Xi × Xj → R, defined by setting (xi, xj |x−ij) = f (xi, xj, x−ij ). 

That is, 

f
¡
(xi, xj ) ∨ 

¡
x0i, xj

0 ¢ , x−ij ¢ −f ((xi, xj ) , x−ij) ≥ f
¡¡
xi
0 , x0j 

¢ 
, x−ij 

¢ 
−f

¡
(xi, xj ) ∧ 

¡
x0i, xj

0 ¢ , x−ij ¢ . 
Both the condition of increasing differences and pair-wise supermodularity are weaker 

forms of supermodularity as it is the restriction of supermodularity condition to a spe­

cial set of cases. (Supermodularity is weakly stronger than pair-wise supermodularity, 

and pair-wise supermodularity is weakly stronger than increasing difference condition.) 

It turns out that supermodularity can be decomposed into increasing differences and 

supermodularity within each Xi. 

The following lemma is a main step towards establishing this fact. Its proof also 

exhibit a common technique of using telescopic equation. 

Lemma 1 If f has increasing differences and xj ≥ yj for each j, then for every i, 

f(xi, x−i)− f(yi, x−i) ≥ f(xi, y−i)− f(yi, y−i). 
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Proof. Take i = 1 without loss of generality. Then, X 
f(x1, x−1)− f(x1, y−1) =  [f (x1, . . . , xj−1, xj, yj+1, . . . , yn)− f (x1, . . . , xj−1, yj, . . . , yn)] 

j>1 X 
≥ [f (y1, . . . , xj−1, xj, yj+1, . . . , yn)− f (y1, . . . , xj−1, yj, . . . , yn)] 

j>1 

= f(y1, x−1)− f(y1, y−1). 

Here, the first and the last equalities are telescopic equations, writing the whole difference 

as a sum of one step changes. The inequality is by increasing differences: for any j, by  

increasing differences between 1 and j, 

f (x1, . . . , xj−1, xj, yj+1, . . . , yn)− f (x1, . . . , xj−1, yj, . . . , yn) 

≥ f (y1, . . . , xj−1, xj, yj+1, . . . , yn)− f (y1, . . . , xj−1, yj, . . . , yn) , 

and one obtains the inequality by summing up both sides. Of course, this is equivalent 

to the statement in the lemma. 

Lemma extends the increasing differences condition from comparison of two entries to 

the comparison of two vectors, establishing a (seemingly) stronger increasing difference 

condition. This further implies that, in product spaces, supermodularity can be decom­

posed into increasing differences and supermodularity within each Xi, as established 

next. 

Proposition 1 For any product lattice (X,≥) (with X = X1 ×· · ·×Xn and coordinate-

wise order) and for any function f : X R, f is supermodular if and only if → 

1. f has increasing differences and 

2. f is supermodular within Xi for each i (i.e., 

f (xi ∨ yi, x−i) + f (xi ∧ yi, x−i) ≥ f (xi, x−i) + f (yi, x−i) 

for all xi, yi ∈ Xi and x−i ∈ X−i). 

Proof. Supermodularity implies increasing differences (1) and supermodularity within 

each coordinate (2) by definition. To prove the converse, take any x, y ∈ X and assume 
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the conditions (1) and (2) in the proposition. Then, 

f (x ∨ y) − f (y) 
nX 

= [f (x1 ∨ y1, . . . , xi−1 ∨ yi−1, xi ∨ yi, yi+1, . . . , yn) − f (x1 ∨ y1, . . . , xi−1 ∨ yi−1, yi, yi+1, . . . , yn)] 
i=1

n
X 

≥ [f (x1 ∨ y1, . . . , xi−1 ∨ yi−1, xi, yi+1, . . . , yn) − f (x1 ∨ y1, . . . , xi−1 ∨ yi−1, xi ∧ yi, yi+1, . . . , yn)] 
i=1

n
X 

≥ [f (x1, . . . , xi−1, xi, xi+1 ∧ yi+1, . . . , xn ∧ yn) − f (x1, . . . , xi−1, xi ∧ yi, xi+1 ∧ yi+1, . . . , xn ∧ yn)] 
i=1 

= f (x) − f (x ∧ y) . 

Here, the first and the last equalities are telescopic equations; the first inequality is by 

(2), and the second inequality is by Lemma 1, which follows from increasing differences 

(1). Of course, each inequality is obtained by summing up the inequalities over i. 

An immediate corollary to the proposition is that supermodularity reduces to pair-

wise supermodularity on Rn: 

Corollary 1 for any f : Rn R, the following are equivalent: → 

1. f is supermodular; 

2. f has increasing differences; 

3. f is pair-wise supermodular. 

Proof. Since R is linearly ordered, every function is supermodular on R. The  corollary  

then follows from Proposition 1 and the definitions. 

Hence, supermodularity is a pair-wise concept on Rn .  This is because  it  reflects the 

pair-wise concept of complementarity. As mentioned in the introduction, as stated in 

terms of constraints, complementarity is also captured by sublattices. It turns out that 

sublattices can be reduced to pair-wise constraints on Rn . 

Proposition 2 Let X be a sublattice of Rn (under coordinate-wise order). For all i, j, 

define 

Cij = {(xi, xj) (xi, xj, x−ij) ∈ X for some x−ij }Y| 
Sij = Cij × R.


k=i,j
6
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Then, \ 
X = Sij. 

i,j 

That is, a sublattice X can be written as a set of pair-wise constraints: x ∈ X iff 

(xi, xj ) ∈ Ci,j ∀i, j. 

This limits the applicability of lattice theory and the analyses in these lectures substan­

tially because many important constraints cannot be stated as sublattices. For example, 

when there are three or more goods, a budget set {x| (x − x̄) · p ≤ 0} cannot be a lattice 
under usual order or its reverse. (Some of the end results here are extended to allow 

such sets in later work.) 

2.5 Order Topology and Continuity 

The order in a lattice induces relevant concepts of continuity and convergence. I will 

conclude this section by describing these concepts, which will be used in the analyses of 

supermodular games. 

Consider a complete lattice (X, ≥). Consider any monotone sequence xn in X. Since  

(X, ≥) is complete, 
sup {xn|n ∈ N} and inf {xn|n ∈ N} 

exist. For any weakly increasing sequence xn (with xn+1 ≥ xn for all n), it is natural to 

think that xn converges to sup {xn|n ∈ N}. Similarly, for any weakly decreasing sequence 

xn (with xn ≥ xn+1 for all n), it is natural to think that xn converges to inf {xn|n ∈ N}. 
The order topology is the smallest topology in which every weakly increasing sequence 

xn converges to its supremum 

lim xn ≡ sup xn, 

and every weakly decreasing sequence xn converges to its infimum 

lim xn ≡ inf xn. 

Definition 8 A function  f : X Y (where Y is any topological space, such as R),→ 

f is said to be continuous (in the order topology) if for every monotone sequence xn, 

lim f (xn) =  f (lim xn). 

That is, for every weakly increasing sequence xn, lim f (xn) =  f (sup xn), and  for  

every weakly decreasing xn, lim f (xn) =  f (inf xn). 
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3 Monotonicity Theorem 

In this section, I will present the main result for the individual decision problems, es­

tablishing the lattice structure of the optimal solutions and establishing monotonicity 

of the solution to the complementary payoff parameters. 

4 Monotonicity Theorem 

Theorem 1 (Topkis’s Monotonicity Theorem) For any lattices (X,≥) and (T,≥), 
let f : X × T → R be a supermodular function (with coordinate-wise order) and define 

x∗ (t) = arg max f (x, t) . 
x∈S(t) 

If t ≥ t0 and S(t) ≥ S(t0), then  x∗(t) ≥ x∗(t0). 

A couple of comments on the statement of the result are in order. First, we use the 

strong set order in comparing S (t) to S (t0) and x∗ (t) to x∗ (t0). Using such a strong 

notion to compare the domains make the result weak, but its usage in comparison of the 

optimal solutions makes the result strong. Second, the supermodularity condition on f 

here can be weakened as 

f (x ∨ x0, t) + f (x ∧ x0, t0) ≥ f (x, t) + f (x0, t0) 

because we are only interested in the case of t and t0. Finally, the condition that t ≥ t0 

can always be satisfied as a matter of definition. 

Proof. Assuming t ≥ t0 and S(t) ≥ S(t0), take any  x ∈ x∗ (t) and x0 ∈ x∗ (t0). In  order  

to show that x∗(t) ≥ x∗(t0), we need to show that x ∨ x0 ∈ x∗ (t) and x ∧ x0 ∈ x∗ (t0). 

For this, it suffices to show that x ∨ x0 ∈ S (t), x ∧ x0 ∈ S (t0), f (x ∨ x0, t) =  f (x, t) 

and f (x ∧ x0, t) =  f (x0, t0). First, since x ∈ x∗ (t) ⊆ S (t), x ∈ S (t). Similarly, 

x0 ∈ S (t0). Since  S(t) ≥ S(t0), we  then  have  x ∨ x0 ∈ S (t) and x ∧ x0 ∈ S (t0). To  

show f (x ∨ x0, t) = f (x, t) and f (x ∧ x0, t0) = f (x0, t0),  note that since  x ∈ x∗ (t) and 

x∨ x0 ∈ S (t), f (x ∨ x0, t) ≤ f (x, t). Similarly, f (x ∧ x0, t0) ≤ f (x0, t0). If either of these 

inequalities were strict, we would have 

f (x ∨ x0, t) + f (x ∧ x0, t0) < f (x, t) + f (x0, t0) , 
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contradicting the supermodularity condition above. Therefore, f (x ∨ x0, t) =  f (x, t) 

and f (x ∧ x0, t0) =  f (x0, t0). 

Note that when the domain of optimization is a lattice, the Monotonicity Theorem 

implies that the optimal solutions form a lattice: 

Corollary 2 For any fixed t, if  f ( , t) :  X R is supermodular and S (t) is a sublattice· → 

of X, then  x∗ (t) is a sublattice of X. 

Proof. Since S (t) is a sublattice, S (t) ≥ S (t). Since  t ≥ t, Monotonicity Theorem 

concludes that x∗ (t) ≥ x∗ (t), showing that x∗ (t) is a sublattice. 

Note that Monotonicity Theorem leads to strong comparative statics without making 

any continuity assumption or any assumption on the domain of the parameters t. For  

example consider the function f on Figure 2, where T = {0, 1} and f (x, 1) − f (y, 1) ≥ 

f (x, 0) − f (y, 0) for any x > y. Let  S (0) = [0, 2] and S (1) = [a, a+ 2]  for a ≥ 0. 

Considering (t = 1, a) as the new parameter, note that S is increasing in both t and a. 

Monotonicity Theorem concludes that x∗ is increasing in t and a. Indeed, 

x∗ (0) =


x∗ (1, a) =  

⎧⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

{x0} 
{a+ 2} if a+ 2  ≤ x1 

{x1} if x1 ≤ a+ 2  < x2 

{x1, x2} a+ 2 =  x2 

{a+ 2} otherwise. 

Since a ≥ 0, x∗ (1, a) ≥ x∗ (0).  This is despite  the fact that the  solution  is  discontinuous  

and f does not satisfy the usual concavity conditions. This example also shows that the 

assumption that S (t) ≥ S (t0) is not superfluous. If a < x0 − 2, so  that  S (1, a) ≥6 S (0), 

then x∗ (1, a) =  {a+ 2} ≥6 {x0} = x∗ (0). 

4.1 Applications 

I will illustrate the applications of Monotonicity Theorem on a couple traditional exam­

ples next. 

Example 4 (Pricing) Consider a monopolist who chooses a price p for its product, 

facing a demand function D (p, t) and marginal cost c, where  t is a demand parameter. 
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X0 1 x0 2 x1 x2 

Figure 2: 

Write 

p∗ (t, c) = argmax  (p − c) D (p, t) 
p≥c0 

for the optimal price, where c0 > c  is a fixed lower bound for prices. Application of 

Monotonicity Theorem to this problem may not be as useful. Observe that optimal solu-

tion is invariant to monotone transformations of objective functions, and hence 

p∗ (t, c) =  arg  max  log (p − c) +  log  D (p, t) . 
p≥c0 

The new objective function is supermodular with respect to p and c. Hence, Monotonicity 

Theorem concludes that p∗ is weakly increasing in c. Moreover, the new objective function 

is supermodular with respect to p and c as long as log D (p, t) is supermodular (i.e. 

D (p, t) is log-supermodular). Hence, Monotonicity Theorem concludes that p∗ is weakly 

increasing in c as long as the demand function is log-supermodular. 

Note also that the order on the domain is invariant to monotone transformations on 

the domain. Hence, the latter condition is equivalent to log D (p, t) being supermodular 

with respect to (log p, t), i.e. the price elasticity of demand 

∂ log D (p, t)− 
∂ log p 

being weakly decreasing in t. 

Example 5 (Auction Theory) Consider a bidder in an auction for an object. The 

value of winning the object at price/bid p is U (p, t) where t is  the type of the  player.  
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Suppose that we are only interested in whether the bidder’s bid is increasing in his type 

(which ensures optimality of the auctions under certain conditions). When can we ensure 

that the bid is indeed increasing in t without computing the solution to the entire auction 

problem, which is often very difficult? Write F (p) for the probability of winning when 

he bids p. The optimal bid is 

p∗ (t) = argmaxU (p, t)F (p) 

= argmax logU (p, t) + logF (p) . 

By Monotonicity Theorem, p∗ (t) is weakly increasing in t as long as U is log-supermodular. 

Exercise 1 Note that the above analysis assumes that the probability of winning is in-

dependent of type given the bid, which makes sense only if the types are independent. 

How would the answer change if F depends on both p and t? 

Example 6 (Production) Suppose that the profit of a  firm is 

pf (k, l)− L (l, w)− K (k, r) , 

where p is the price of the product, k is the capital input, l is the labor input, and w and 

r are cost parameters for labor and capital, such as wage and interest, respectively. The 

firm chooses k and l. How would an increase in w affect the optimal labor and capital 

level? Note that it is natural to assume that L is supermodular (e.g. L = lw). This 

is equivalent to assuming that − L is supermodular with respect to − l. It turns out that 

this suffices to conclude that optimal l is weakly decreasing in w. Note  that  in  order  to  

apply Monotonicity Theorem, we need to ensure that the profit function is supermodular 

in (k, l, w), i.e., we also need to assume supermodularity with respect to k. We  go  

around this requirement as follows (which is a useful technique/trick). Since we are only 

interested how l changes with w, the order on k is irrelevant to the end result. Let l∗ (w, r) 

and l∗ (w0, r) be the solutions at the relevant values where − l∗ (w, r) ≥ −  l∗ (w0, r). We  

order k in such a way that the profit function is supermodular at these values: 

k ≥ k0 ⇐⇒ f (k, l∗ (w, r))− f (k, l∗ (w0, r)) ≥ f (k0, l∗ (w, r))− f (k0, l∗ (w0, r)) . 

Then, Monotonicity Theorem (with the restricted domain) implies that − l is weakly 

increasing in w, i.e., l is weakly decreasing in w. 
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How does optimal k change in w? In order to answer this question we need to use 

the original (or reverse) order on k. It is usually assumed that the production function 

is supermodular (e.g. f = kαlβ). In that case, the profit function is supermodular when 

we use the reverse order on both k and l. Then, Monotonicity Theorem concludes that 

the optimal capital k is decreasing in w. 

4.2 Monotonicity Theorem with Continuity and Completeness 

In application to supermodular games, we will assume that the strategy spaces are 

complete lattices and the utility functions are continuous with respect to the order 

topology. In that case the optimal solutions have further properties. 

Theorem 2 Let (X, ≥) be a lattice, and f : X → R be supermodular and continuous in 

the order topology. Then, for any complete sublattice S, 

x∗ = arg  max  f (x) 
x∈S 

is a complete sublattice, and max x∗ ∈ x∗ and min x∗ ∈ x∗ exist. 

Proof. The fact that x∗ is a lattice follows from Topkis’s Monotonicity Theorem as we 

have seen above. Moreover, for every A ⊆ x∗ ⊆ S, inf A ∈ S and sup A ∈ S exist because 

S is complete. It suffices to show that inf A ∈ x∗ and sup A ∈ x∗.  This is immediate  

because we can construct a weakly decreasing sequence xn in A with inf xn = inf  A and 

the continuity of f implies that f (inf A) =  f (inf xn) = lim f (xn) = lim  f (x0) because 

f is constant over x∗. Since  xn is a solution and inf A ∈ S, this  implies  that  inf A ∈ x∗. 

The argument for  sup A ∈ x∗ is identical. Since inf x∗ ∈ x∗ and sup x∗ ∈ x∗, we  write  

min x∗ = inf  x∗ and max x∗ = sup  x∗. 

5 Supermodular Games 

We will now consider games in which the strategy spaces are complete lattices and the 

utility functions are continuous (with respect to the order topology) and supermodular 

(we will make a slightly weaker assumption). Such games are called supermodular. For 

these games we will establish a useful structure of Nash equilibria and rationalizability, 

showing that the rationalizable strategies are bounded by extremal equilibria, and obtain 
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a useful monotonicity result on extremal equilibria. We will conclude by introducing 

incomplete information to the analysis. 

5.1 Formulation 

Definition 9 A game  (N,S, u) is supermodular if for each player i ∈ N , 

•	 strategy space (Xi,≥i) is a complete lattice for some order ≥i, and  

•	 ui is continuous with respect to the product topology, supermodular in xi and has 

increasing differences: 

ui (x ∨ x) +  ui (x ∧ x0) ≥ ui (x) +  ui (x
0) 

¡
∀xi, xi0 ∈ Xi,∀x−i ≥ x0 −i 

¢ 
.−i ∈ X

Since X is a complete lattice x= min  X and x̄ = max  X exist. 

Here, recall that continuity of ui means that for every weakly increasing sequence of 

strategy profiles x (n), limn ui (x (n)) = ui (supn x (n)), and for every weakly decreasing 

sequence of strategy profiles x (n), limn ui (x (n)) = ui (infn x (n)). 

The supermodularity condition is weaker than full supermodularity because we only 

consider strategy profiles x and x0 for the other players that are ordered. When we −i −i 

restrict x = x0 , the above condition reduces to the condition that ui is supermodular −i −i

in xi: 

ui (xi ∨ x0i, x−i)+ui (xi ∧ xi
0 , x−i) ≥ ui (xi, x−i)+ui (xi

0 , x−i) (∀xi, xi0 ∈ Xi,∀x−i ∈ X−i) . 

When we restrict xi and x0 to be ordered, say x0 ≥ xi, the above condition reduces to i	 i 

the usual increasing differences condition: 

ui (x
0

−i) ≥ ui 
¡
x0 0 ¢ −ui ¡ 0 ¢ ¡

∀xi0 ≥ xi ∈ Xi,∀x−i ≥ x0 −i 
¢ 

i, x−i)−ui (xi, x i, x−i xi, x−i −i ∈ X . 

These are the only restrictions imposed by the definition. Recall that in product lattices 

as in here, supermodularity is equivalent to supermodularity with respect to each xj and 

increasing differences. Here, we assume supermodularity with respect to xi and increas­

ing differences, but we do not make any supermodularity assumption with respect to 

other players’ strategies xj (with j = i). This is the only weakening of supermodularity. 6

16




Example 7 (Linear Differentiated Bertrand Oligopoly) Consider a Bertrand oligopoly 

model with each player i faces constant marginal cost ci and demand function Qi (p) =P 
A − aipi + j=i bjpj , where  A, ai and bj are all positive numbers. Restrict the choice of 6

possible price pi for each i to be in [ci, p̄i] for some large p̄i.  This yields a supermodular  

game in the natural order because 

ui (p) = (pi − ci)Qi (p) 

is supermodular: 
∂2ui 
∂pi∂pj 

= bj ≥ 0. 

Example 8 (Linear Cournot Duopoly) Consider a Cournot duopoly model with in-

verse demand function P = A − q1 − q2 and cost functions C1 (q1) and C2 (q2). Restrict 

the set of possible production levels to a large compact interval. This leads to a "sub-

modular" game in the natural order because the utility function of firm i is 

ui (q) = qiP (q)− Ci (qi) , 

yielding 
∂2ui 
∂qi∂qj 

= −1 < 0. 

This is a supermodular game when q2 is ordered in the reverse order: 

∂2ui 
= 1 > 0. 

∂q1∂ (−q2) 
In general, submodular two player games can be made supermodular by reversing the 

order on one of the strategies. Hence, submodular two player games exhibit the useful 

properties of supermodular games. This trick does not work, however, when there are 

more than two players, and the submodular games with more than two players may 

exhibit dramatically different properties than the supermodular ones. 

Example 9 (Linear Cournot Oligopoly) In the above example, suppose that there 

are three or more players. Once again, for any i = j,6
∂2ui 
∂qi∂qj 

= −1 < 0. 

But this game cannot be made supermodular by reversing the orders. Indeed, the relation 

between rationalizability and Nash equilibria in Cournot oligopoly is quite different than 

the relation in Cournot duopoly, as we will see later. 
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5.2 Rationalizability and Equilibrium 

In this section, we will establish that (i) there exist extremal equilibria and that (ii) all 

rationalizable strategies are bounded by the extremal equilibria. We start with sum­

marizing the useful implications of the monotonicity results in previous section and 

introduce a couple useful notation. 

Lemma 2 For any supermodular game, any i ∈ N , 

1. for every x−i ∈ X−i, xi 
∗ (x−i) = argmaxxi∈Xi ui (xi, x−i) is a complete lattice; 

2. for every x, Bi (x) ≡ maxxi 
∗ (x−i) ∈ x∗ 

i (x−i) and bi (x) ≡ minxi 
∗ (x−i) ∈ x∗ 

i (x−i), 

and 

3. Bi and bi are isotone, i.e., Bi (x) ≥ Bi (y) and bi (x) ≥ bi (y) whenever x ≥ y. 

Proof. The first two statements are by the monotonicity theorem for complete lattices 

(namely Theorem 2). But since ui is supermodular with increasing differences and 

the domain of optimization is independent of x−i, by Topkis’s Monotonicity Theorem, 

whenever x ≥ y, x∗ 
i (x−i) ≥ x∗ (y−i) in the sense of strong set order. In particular, i 

Bi (x) = maxxi 
∗ (x−i) ≥ maxxi 

∗ (y−i) = Bi (y) and bi (x) = minxi 
∗ (x−i) ≥ minxi 

∗ (y−i) =  

bi (y). 

The following lemma will be the main step in establishing the extremal rationalizable 

strategies and equilibria. 

Lemma 3 Every xi with xi 6 x) is strictly dominated by xi∨bi (x), where  x = minX.≥ bi (

Proof. Take any x−i. We  want  to  show  that  

ui (xi ∨ bi (x) , x−i)− ui (xi, x−i) > 0. (1) 

Now, since x−i ≥ x−i and xi ∨ bi (x) ≥ xi,we have 

ui (xi ∨ bi (x) , x−i)− ui (xi, x−i) ≥ ui xi ∨ bi (x) , x−i − ui xi, x−i 

ui 

¡¡
bi (x) , x

¢ ¢ ¡
xi ∧

¡
bi (x) , x

¢ ¢ 
. (2) ≥ −i − ui −i 

where the first inequality is by increasing differences and the second inequality super-

modularity in own strategy xi. Hence,  to  show  (??), it suffices to show that ¡ ¢ ¡ ¢ 
ui bi (x) , x−i − ui xi ∧ bi (x) , x−i > 0. 
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But, since bi (x) ∈¡ arg maxx¢ i ui ¡xi¡, x−i ¢ , ui ¡bi (x)¢ , x−i ¢ ≥ ui 
¡
xi ∧ bi (x) , x−i 

¢ 
. If  it  

were true that ui bi (x) , x−i = ui xi ∧ bi (x) , x−i , then  we  would  have  xi ∧ bi (x) ∈ 

arg maxxi ui 
¡
xi, x−i 

¢ 
, and  by  definition of bi (x) we would have xi ∧ bi (x) ≥ bi (x), show­

ing that xi ≥ bi (x), a contradiction. Therefore, ui 
¡
bi (x) , x−i 

¢ 
> ui 

¡
xi ∧ bi (x) , x−i 

¢ 
. 

Iterative application of this lemma leads to the following well-known result, due to 

Milgrom and Roberts. 

Theorem 3 For any supermodular game, 

1.	 z̄ ≡ limk B
k (x̄) ≡ infk B

k (x̄) and z≡ limk b
k (x) ≡ supk b

k (x) exists, where x̄ = 

supX and x = inf  X; 

2.	 for every rationalizable strategy profile x, 

z̄ ≥ x ≥ z, 

3. and z̄ and z are (pure strategy) Nash equilibria. 

Proof. (Part 1) First note that Bk (x̄) is weakly decreasing. [B1 (x̄) ≤ B0 (x̄) = x̄ by 

definition of x̄. If  Bk (x̄) ≤ Bk−1 (x̄), then by monotonicity of B (Lemma 2), Bk+1 (x̄) =  

B
¡
Bk (x̄) 

¢ ¡
Bk−1 (x̄) 

¢ 
= Bk (x̄).] Hence, limk B

k (x̄) = infk B
k (x̄) (existence is by ≤ B

completeness, of course, as we have seen before). Similarly, bk (x) is weakly increasing, 

and therefore limk b
k (x) ≡ supk b

k (x). 

(Part 2) I will show that if xi ∈ Si
k, then  xi ≥ bki (x). This  is  true  for  k = 0, by  

definition. Suppose that xj ≥ bk−1 (x) for all j ∈ N and xj ∈ Sk Then, by Lemma 3, j j . 

every xi ≥6 bk−1 (x) is strictly dominated in the reduced game at round k and is not in i 

Si
k . Therefore, xi ≥ bk (x) for every xi ∈ Si

k .i 

(Part 3) I will show that z̄ is a Nash equilibrium, i.e., z̄i ∈ x∗ 
i (z̄−i). To this end, take 

any xi, and consider the weakly decreasing sequences 
¡
xi, b

k−1 (x̄) 
¢ 
and 

¡
bi
k (x̄) , bk−1 (x̄) 

¢ 
. 

¡ ¡ ¢ ¢¡→ ¢	
−i ¡ −i ¢ 

Clearly, limk xi, b
k−1 (x̄) (xi, z̄−i) and (z̄i, z̄−i). Moreover,  since  bi

k (¯ bk−1 (x̄) ,−i x) ∈ x∗ −i 

ui b
k (x̄) , bk−1 (x̄) xi, b

k−1 (x̄) for each k. Hence, by continuity of ui in the order i −i ≥ ui −i 

topology, 

ui (z̄i, z̄−i) =  ui 
¡
lim

¡
bki (x̄) , b

k−1 (x̄) 
¢¢ 
= limui 

¡
bki (x̄) , b

k−1 (x̄) 
¢ 

−i −i 

≥ limui 
¡
xi, b−

k−
i 
1 (x̄) 

¢ 
= ui 

¡
lim

¡
xi, b−

k−
i 
1 (x̄) 

¢¢ 
= ui (xi, z̄−i) . 
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This result establishes several important fact. First of all, it establishes that there 

exists an equilibrium, indeed, extremal equilibria in pure strategies (Part 3). Second, 

it establishes a useful procedure to compute these equilibria (Part 3), namely, one it­

eratively applies extremal best response functions to the largest and smallest strategy 

profiles. In comparison, finding a fixed point of a function is a computationally hard 

problem. Finally, it establishes that the rationalizable strategies are bounded by these 

extremal equilibria (Part 3). This not only relates extreme implications of equilibrium 

and rationalizability to each other, but also helps in identifying rationalizable strategies. 

For example, when the extremal best response functions are continuous and strategy 

sets are convex intervals, the result implies that the rationalizable set is the convex hull 

of extremal equilibrium strategies. It also implies that uniqueness of rationalizability is 

equivalent to dominance solvability: 

Corollary 3 A supermodular game is dominance solvable if and only if there exists a 

unique Nash equilibrium in pure strategies. 

The following example illustrates the Milgrom-Roberts theorem above and shows 

that completeness is not superfluous. 

Example 10 (Partnership Game) There is an employer, who provides capital K, 

and a worker, who provides labor L.  They share  the output,  which is  KαLβ for some 

α, β ∈ (0, 1) with α+ β < 1. The utility functions of the Employer and the Worker are 

KαLβ/2 − K and KαLβ /2 − L, respectively. The best-response functions K∗ and L∗are 

plotted in Figure 3. There are two pure strategy equilibria, one at (0, 0) and one with ³ ´ 
ˆpositive labor and capital, denoted by K, L̂ . When all nonnegative inputs are allowed, 

the strategy sets are not complete lattices. In that case, every strategy is a best response 

to some other, and hence every strategy is rationalizable, and the bounds of Milgrom 

and Roberts are not valid. Now suppose that the strategy sets are bounded by above for 

some large K̄ and L̄, so  that  K ∈ 
£ 
0, K̄

¤ 
and L ∈ 

£ 
0, L̄

¤
.  Now,  we have a supermodular  

game (with complete lattices as strategy spaces). Then, as shown in the figure, one can h i h i 
iteratively eliminate all K > K̂ and L > L̂. Hence  S∞ ⊆ 0, K̂ × 0, L̂ , as  in  the  

Milgrom-Roberts theorem. Moreover, since the best response functions are continuous, h i h i h i h i 
0, K̂ 0, L̂ is closed under rational behavior, and hence S∞ = 0, K̂ 0, L̂ .× × 
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K*
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Rationalizable 

L 

Figure 3: Rationalizability and Equilibria in the partnership game 

5.3 Comparative Statics 

The next result, due to Milgrom and Roberts, shows that the extremal equilibria are 

weakly increasing in complementary parameters, extending the Monotonicity Theorem 

for optimization in games. 

Theorem 4 Consider a family of supermodular games with payoffs parameterized by t. 

Suppose that for all i, x−i, Ui(xi, x−i; t) is supermodular in (xi, t). Write  z̄ (t) and z(t) 

for the extremal equilibria at t. Then,  z̄ (t) and z(t) are isotone. 

Proof. Take any t, t0 with t ≥ t0, and  write  bt and bt0 for the minimal best response 

function under t and t0, respectively. By Topkis’s Monotonicity Theorem, bt (x) ≥ bt0 (x) 

for every x. Since  bt and bt0 are isotone, this further implies that bk (x) ≥ bt
k 
0 (x) for every t 

k. Therefore,  

z (t) =  sup bk (x) ≥ sup bkt0 (x) =  z (t0) .t 

Similarly, 

z̄ (t) = inf  Bk (x̄) ≥ inf Bt
k 
0 (x̄) = z̄ (t0) .t 
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K* 

L* 
t’ > t 

Figure 4: Effect of productivity parameter in the partnership game 

Example 11 As an illustration of the theorem, take the output function in the partner-

ship game as tKαLβ . As it is illustrated in Figure 4, an increase in t results in steeper 

best response functions. This leads the largest equilibrium to increase. On the other 

hand, the smallest equilibrium remains unchanged (corresponding to a weak increase). 

Topkis’s Monotonicity Theorem established that in single-person decision problems, 

the entire set of the solutions increase in the sense of strong set order. It is tempting to 

conjecture that the same is true for Nash equilibria in multi-person decision problems 

(as in the partnership game above). This is not true in general. Indeed, in Diamond’s 

search model at the beginning, although the extremal equilibria weakly increase, the 

middle equilibrium actually decreases, as shown in Figure 1. 

Note that S∞ weakly increases in the sense of set order all of these examples. Indeed, 

when the best response functions are continuous and strategy spaces are one-dimensional, 

Si
∞ = [zi, z̄i], and the monotonicity result of Milgrom and Roberts already imply that 

S∞ is isotone in the sense of strong set order. It is not clear how general this fact is. 
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6 Supermodular Bayesian Games 

To some extend, the analyses for complete information games above contains Bayesian 

games with countable type spaces because any such Bayesian game can be represented 

by the interim game as a game of complete information. After illustrating this fact, I 

will introduce monotone supermodular games of incomplete information (due to Vives 

and van Zandt), in which the type and action spaces are compact subsets of Rn, and  the  

players’ beliefs are monotone with respect to their types. These games will then exhibit 

further monotonicity properties because of belief monotonicity. This analysis will be 

used later in global games, which are special cases of these games. 

I will start with illustrating how one can use the above results for Bayesian games 

with countable (or finite) type spaces. 

Definition 10 A countable supermodular Bayesian game is a Bayesian game B = 

(N, A, Θ, T, u, p) with 

•	 each Ai is a complete lattice for some ≥i, 

•	 T is countable (or finite), and 

•	 ui is measurable, bounded, continuous in a, supermodular  in  ai and has increasing 

differences. 

As in the earlier lectures, for any such Bayesian game, one can define the interim 

game AG (B), by  taking  ∪iTi as the countable set of players, Ai as the action space for 

each ti, and  

uti (s) =  E [ui (θ, si (ti) , s−i (t−i)) |ti] , 

where s is taken as a profile of actions (for all types), rather than strategies in the ex-

ante sense. Since ui is supermodular in ai, uti (s) is supermodular in si (ti). Since  ui 

has increasing differences in a−i, uti has increasing differences with respect to all actions 

other than si (ti) (type ti puts zero probability on other types of i). Moreover, since ui 
is bounded, continuity of ui implies continuity of uti . Since  Ai is already a complete 

lattice, this shows that the interim game is supermodular. 

Lemma 4 For any countable supermodular Bayesian game B, the  interim  game  AG (B) 
is a supermodular game (of complete information). 
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Using this observation, one extends the previous results to Bayesian games as follows. 

Theorem 5 For any countable supermodular Bayesian game B, the following are true. 

1. There exist Bayesian Nash equilibria s and s̄ in pure strategies. 

2. For any interim independent rationalizable action ai of any type ti, 

s̄i (ti) ≥ ai ≥ si (ti) . 

3. For any Bayesian Nash equilibrium s, s̄ (t) ≥ s (t) ≥ s (t) for all t ∈ T . 

Moreover, for any family of countable supermodular Bayesian games Bλ =
¡
N,A,Θ, T, uλ, p  

¢ 
with uλ (θ, ai, a−i) supermodular in (ai, λ), the extremal equilibria sλ and s̄λ are isotone i 

in λ. 

Proof. By Lemma 4, AG (B) is a supermodular game. (1) Hence by Theorem 3, AG (B) 
has Nash equilibria s and s̄ in pure strategies. Of course, s and s̄ are Bayesian Nash 

equilibria of B. (2) Any interim independent rationalizable action ai of any type ti is 

a rationalizable action of ti in AG (B) by definition. Hence, by Theorem 3, s̄i (ti) ≥ 

ai ≥ si (ti). Part 3 follows from Part 2. For the last statement, observe that ut
λ 
i 
(s) =  

E 
£ 
uλ (θ, si (ti) , s t−i)) ti

¤ 
is supermodular in (si (ti) , λ). Hence, by Theorem 4, sλ 

i −i ( |
and s̄λ are isotone in λ. 

Unfortunately, the above transformation cannot be applied to countable type spaces 

because one needs measurability condition on strategies in order to compute the ex­

pectation. (Hence, the space of strategy profiles is not  a  product  set  in  AG (B).) For 
such cases, Vives and Van Zandt introduce following class of Bayesian games, which also 

incorporate useful monotonicity conditions on beliefs. 

Definition 11 A monotone supermodular game (of incomplete information) is a Bayesian 

game B = (N,A,Θ, T, u, p) with 

• each Ai is a compact sublattice of RK ; 

• Θ × T is a measurable subset of RM ; 

• ui is such that 
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—	 ui (a, ) : Θ R is measurable, and · → 

—	 ui ( , θ) : A R is continuous, bounded by an integrable function, supermod-· → 

ular in ai and has increasing differences, 

—	 ui has increasing differences in (ai, θ) 

•	 p(·|ti) is a weakly increasing function of ti in the sense of 1st-order stochastic 

dominance. 

This definition is more general in that type spaces can be any subspace of a Rn, but  

it is more restrictive in that it restricts the action spaces to be subsets of Rn.Clearly, the 

continuity and measurability assumptions on u is made in order to ensure the necessary 

continuity of conditional expected payoffs of types. Finally, the beliefs of types are 

assumed to be monotone in the sense of first-order stochastic dominance. Together with 

supermodularity of u, this ensures that the extremal equilibria are monotone (for the 

same reason behind Theorem 4). This leads to the following result. 

Theorem 6 A monotone supermodular game there exists Bayesian Nash equilibria s 

and s̄ in pure strategies such that for any Bayesian Nash equilibrium s, s̄ (t) ≥ s (t) ≥ 

s (t) for all t ∈ T , and  s̄i (ti) and si (ti) are weakly increasing in  ti. 

This result is silent about rationalizable strategies, but as we will see in the context 

of global games they are also bounded by the extremal equilibria as in the previous 

results. 

In conclusion, in supermodular games, all rationalizable strategies are bounded by 

extremal pure strategy equilibria, and these equilibria are weakly increasing with respect 

to complementary variables, leading to monotone comparative statics. 

7 Exercises  

1. For some lattice (X, ≥), consider supermodular functions f : X → R and g : X → 

R. Prove or disprove the following. 

(a) For any a, b ≥ 0, af + by is supermodular. 
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(b) If f and g are isotone and nonnegative (i.e. f (x) ≥ 0 and g (x) ≥ 0 for all 

x), then fg  is supermodular. 

(c) Under the conditions in part b, fα is supermodular for any α ≥ 1. 

2. This question asks you to prove some basic facts. 

(a) For any lattice (X, ≥ ), show that if S and T are sublattices, so is S ∩ T . 

(b) Consider a function	 f : X × Ω → R, where  (X, ≥ ) is a lattice and Ω is 

a probability space with expectation operator E. Show that if f( , ω) is·
supermodular for all ω ∈ Ω, then  E[f ] is also supermodular. 

(c) Let X be a set of sets that is closed under union (i.e. A ∪ B ∈ X for all 

A, B ∈ X) and  with  ∅ ∈  X. Define order ≥ on X by A ≥ B ⇐⇒ A ⊇ B. 

Show that (X, ≥ ) is a complete lattice. What are A ∨ B and A ∧ B? 

(d) On the set RR+ of functions f : R+ R+, define order ≥ by f ≥ g+ →³ ´	 ⇐⇒ 

f(x) ≥ g(x) for all x ∈ R. Showthat RR+ , ≥ ´is a lattice. Show also that + 

the following are sublattices: 

i. all continuous functions, 

ii. all non-increasing functions, and 

iii.	 all functions f with f ≤ g for some fixed function g. 

3. Prove the following statements. 

(a) If f and g are supermodular, so is f + g. 

(b) If f is supermodular and a >  0, then  af is also supermodular. 

(c) If f : Θ × X → R, where  

• X is a lattice, 

• θ ∈ Θ is not known, 

• f (θ, ·) : X → R is supermodular for each θ ∈ Θ, 

then E [f ] : X R is supermodular, where E is an expectation operator on → 

Θ. 
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4. A lattice X is said to be complete iff every Y ⊂ X has a greatest lower bound and 

a least upper bound in X. Let  X be a complete lattice and f : X X be isotone. → 

(Do not assume that B is continuous.) Define 

x = inf {x|f (x) ≤ x} 

x̄ = sup {x|f (x) ≥ x} . 

Show that x̄ and x are fixed points of f , i.e., x̄ = f (x̄) and x= f (x). Show  also  

that, if f (x) = x, then  x ≤ x ≤ x̄. 

5. Let z= (z1, . . . , zn) be the smallest rationalizable strategy profile in a given super-

modular game. Let also y be the smallest Nash equilibrium of the game that is 

created by fixing Player 1’s strategy at z1. Show that 

z = y. 

6. Let X be a complete lattice and T = R. 

(a) Let	 f : X × T → X be isotone, and x̄ (t) be the highest fixed point of 

f ( , t) for each t. Show  that  x̄ is isotone. [Hint: First show that x̄ (t) =·

sup {x|f (x, t) ≥ x}.]


(b) Let Bn (x, t) be the largest best reply to x−n for each n in a supermodular 

game Gt with a generic strategy profile x = (x1, . . . , xN ). Let also B (x, t) =  

(B1 (x, t) , . . . , BN (x, t)). Let  x̄ (t) be the highest Nash equilibrium of Gt. 

Show that, if t ≥ t0, then  

x̄ (t) ≥ B (x̄ (t0) , t) . 

7. There is a (large) consumer of a good with integrable,	 non-increasing demand 

function Dt : R+ → R+ where t ∈ R is a demand parameter in which Dt(q) is 

increasing for each quantity q. Consumer faces an increasing, continuous supply 

function Sω : R+ R+ where ω is an unknown supply parameter (i.e. supply is → 

stochastic). Consumer submits a non-increasing, continuous demand function (or 

bid) x : R+ → R+with x ≤ Dt, and buys quantity q(x, Sω) at price p(x, Sω) where 
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p(x, Sω) =  x(q(x, Sω)) = Sω(q(x, Sω)) (i.e. market clearing price and quantity). 

The payoff of consumer is Z q(s,Sω ) 

u (x, ω, t) =  Dt (q) dq − p(x, Sω)q(x, Sω). 
0 

His expected utility is U(x, t) = E[u(x, ω, t)]. 

(a) Show that U is supermodular with respect to the order in problem 2.d. 

(b) For any t, show  that  x∗(t) is a sublattice where 

x∗(t) = argmaxU(x, t). 
x 

(c) Show that x∗(t) is isotone in t. 

8. Consider a Cournot duopoly where each firm i has a privately known cost function 

ci : R+ R+ and the inverse-demand function P is twice differentiable with → 

P 00 +P 0 < 0. Putting the order in problem 2.d on functions, assume that the set of 

cost functions and strategies are restricted in such a way that the strategy space 

is a complete lattice. 

(a) Show that there exist Nash equilibria (x̄1, x2) and (x1, x̄2) such that for each 

ex-ante rationalizable strategy xi of each firm i, xi ≤ xi ≤ x̄i. 

(b) Suppose that we add a constant ∆ > 0 to the inverse demand, so that the 

new price is P̃ (q) =  P (q) + ∆ for each q. Can you use Milgrom-Roberts 

theorem to determine how xi and x̄i. change? 

(c) Suppose that Firm 1 receives a government subsidy, receiving s >  0 for each 

unit it sells. Show that x1 and x̄1 are weakly increasing in s and x2 and x̄2 

are weakly decreasing in s. 

9. We have a differentiated Bertrand duopoly in which each firm sells m goods, k = 

1, 2, . . . ,m.  Firms 1 and 2 simultaneously set price vectors p1 and p2 and firm i 

gets profit 
mX 

Ui = (pi,k − ci,k)Qi,k (pi, pj ) 
k=1 
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where ci,k ∈ [0, 1] is the constant marginal cost of producing good k for i and Qi,k 

is the demand for good k of i; it is continuous, decreasing in pi,k, increasing in  all  

the other variables (i.e. all pj,k0 with (j, k0) = (i, k)) and supermodular. Assume 6
that it must be that pi,k ∈ [ci,k, 1] for all i, k. 

(a) Assuming that each ci,k is common knowledge, show that this game is super-

modular. (State any additional assumption needed.) 

(b) In part (a), show that there exist Nash equilibria (p∗ 
1, p

∗ 
2) and (p∗∗ 

1 , p
∗∗ 
2 ) such 

that p∗ 
i,k for each rationalizable strategy pi and each (i, k).i,k ≥ pi,k ≥ p∗∗ 

(c) Assume that each ci = (ci,1, . . . , ci,m) is private information of i, coming  from  

a countable subset of [0, 1]. Show that there exist Bayesian Nash equilibria 

1, p
∗) and (p∗∗ ) such that p∗ (ci) ≥ pi,k (ci) ≥ p∗∗ (ci) for each rational­(p∗ 
2 1 , p2 

∗∗ 
i,k	 i,k 

izable strategy pi and each (i, k, ci). 

10.	 Consider a partnership game with two players, who invest in a public good project 

at each date t ∈ T = {0, 1, 2, . . .} without observing each other’s previous invest­

ments. We assume that a strategy of a player i is any function xi : T [0, 1],→ 

where xi (t) is the investment level of i at t ∈ T . The payoff of of a player i is X 
Ui (x1, x2) =  δt [Af (x1 (t) , x2 (t)) − ci (xi (t) , t)] 

t∈T 

where δ ∈ (0, 1), A ∈ [0, 1] is a productivity parameter, f : [0, 1]2 R is a → 

supermodular, increasing, and continuous production function, and ci is a time 

dependent cost function  for  player  i. Everything is common knowledge. 

(a)  Show  that the  above game have equilibria  x and x̄ such that for each equilib­

rium x of this game, 

xi (t) ≤ xi (t) ≤ x̄i (t) (∀i, t) . 

(b) Let	X be the set of all equilibria of this game. Construct an incomplete-

information model in which (i) it is common knowledge that each player is 

rational and (ii) a strategy profile x is played at some state ω if and only if 

x ∈ X. 
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(c) Show that, if A ≥ A0, then the extremal equilibria for these parameters satisfy 

xi (t; A) ≥ xi (t; A
0) and x̄i (t; A) ≥ x̄i (t; A0) (∀i, t) . 

(d) Consider a strategy xi with xi (0) > x̄i (0). Can you construct an incomplete-

information model such that (i) each player is rational at each state and (ii) 

xi is played by player i at some state? 

11. Consider a two-person partnership game.	 Simultaneously, each player i invests 

ai ∈ [0, 1], and  the  payoff of player i is 

ui (a1, a2, θ) =  θf (a1) f (a2) − c (ai) , 

where θ ≥ 0 is a parameter, and f and c are strictly increasing functions with 

f (0) > 0. Assume that θ is common knowledge. 

(a) Show that the game is supermodular. 

(b) Assuming that best-reply correspondence is convex-valued and continuous, 

compute all rationalizable strategies. How would your answer change without 

the continuity assumption? 

(c) Show that the minimum and the maximum rationalizable strategies as well 

as minimum and maximum equilibrium strategies are increasing functions of 

θ. Give an example, showing that set of Nash equilibria is not increasing in 

θ in the sense of strong set order. 

12. (This question is to illustrate how we can use the ideas in supermodular game 

literature for structural estimation, where computational costs are very high.) Two 

discount chains, Walmart and Kmart, are competing for M (geographical) markets. 

For each market m, decision of a chain i is binary: Di,m = 1  if it has a store in 

market m, and  Di,m = 0  if it does not have a store in market m. Simultaneously, 

each chain decides in which markets it will have a store. The profit of chain  i is "	 # X	 X 
Πi = Di,m (βiXm + δi,jDj,m) +  δi,i Di,l 

m∈M l∈Nm 

where 
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•	 βi is a chain specific constant, 

•	 Xm is a market size variable, 

•	 δi,j < 0 is a parameter measuring the competition between the two firms, 

•	 δi,i ≥ 0 is a constant measuring the synergy between the neighboring stores, 

and 

•	 Nm is the set of neighboring markets of market m. 

Everything is common knowledge. 

(a) Let 

Bi (Dj ) = argmaxΠi (Di,Dj ) . 
Di 

Show that computing Bi (Dj) by brute force requires at least 2M utility com­

parisons. How large is this number if M = 2065 (the number of markets in 

the US)? How many utility comparisons that we would have to make if we 

want to compute the pure strategy Nash equilibria by brute force? Comment 

on how long it would take an econometrician to estimate (βi, δi,i, δi,j ) this 

way? 

(b) Let Fi (Dj ) be the set of Di that satisfy the first-order conditions in computing 

Bi (Dj ), i.e., Di ∈ Fi (Dj ) iff 

Di,m = 1⇒ Πi (Di,Dj) ≥ Πi (0,Di,−m, Dj ) , 

Di,m = 0 Πi (Di,Dj) ≥ Πi (1,Di,−m, Dj ) ,⇒ 

where D0 = (A,Di,−m) is the decision where D0 = A and Di,m
0 

0 = Di,m0 for i	 i,m 

all m0 = m.6

i. Show that F̄i (Dj ) = maxFi (Dj) and F i (Dj) = minFi (Dj) exists. 

ii. Show that	 Bi (Dj) ⊆ Fi (Dj ), and  for  each  Di ∈ Bi (Dj), F̄i (Dj) ≥ 

Di ≥F i (Dj ). 

iii. Using the techniques discussed in the class, find a procedure for comput­

ing F̄i (Dj) and F i (Dj) such that each of the computation takes at most 

M2 utility comparisons.  How  large is this number when  M = 2065? 
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(c) Say that D = (D1,D2) is a pseudo Nash equilibrium iff Di ∈ Fi (Dj) for each 

i and j. Show that every Nash equilibrium is a pseudo Nash equilibrium. 

Show that there exists pseudo Nash equilibria D1 and D2 such that for each 

pseudo Nash equilibrium D, 

D1
1 ≥ D1 ≥ D2 and D2

2 ≥ D2 ≥ D2
1;1 

in particular, the above bounds apply for each Nash equilibrium. 

(d) Find a procedure for computing D1 (and D2) such that there are at most 

4M3 utility comparisons. Briefly discuss this result in comparing with part 

(a). 
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