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14.126 Game Theory 
Muhamet Yildiz 

Road map 

1.	 Theory 
1.	 2 x 2 Games (Carlsson and van Damme) 
2.	 Continuum of players (Morris and Shin) 
3.	 General supermodular games (Frankel, Morris, 

and Pauzner) 
2.	 Applications 

1.	 Currency attacks 
2.	 Bank runs 
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Motivation 

� Outcomes may differ in similar environments. 
� This is explained by multiple equilibria

(w/strategic complementarity) 
� Investment/Development 
� Search 
� Bank Runs 
� Currency attacks 
� Electoral competition… 

� But with introduction of incomplete information,
such games tend to be dominance-solvable 

A simple partnership game 

Invest Not-Invest 

Invest θ,θ θ −1, 0 

Not-Invest 0,θ−1 0,0 
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θ is common knowledge 

0,00,θ−1Not-Invest 

θ −1, 0θ,θInvest 

Not-InvestInvest 

θ < 0 

θ is common knowledge 

0,00,θ−1NotInvest 

θ −1, 0θ,θInvest 

NotInvest Invest 

θ > 1 
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θ is common knowledge 

0,00,θ−1Not-Invest 

θ −1, 0θ,θInvest 

Not-InvestInvest 

0 < θ < 1 Multiple Equilibria!!! 

θ is common knowledge


Invest Not-Invest Multiple 
Equilibria 

θ 
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θ is not common knowledge 

� θ is uniformly distributed over a large interval 
� Each player i gets a signal 

xi = θ + εηi 
� (η1, η2) is bounded, 
� Independent of θ, 
� iid with continuous F (common knowledge), 
� E[ηi] = 0. 

Conditional Beliefs given xi 

θ =d xi – εηi 

� i.e. Pr(θ ≤ θ|xi) = 1-F((xi-θ)/ε); 
xj = d xi + ε(ηj -ηi) 

� Pr(xj ≤ x|xi) = Pr(ε(ηj – ηi) ≤ x – xi); 
� F(θ,xj|xi) is decreasing in xi 

� E[θ|xi] = xi 
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Payoffs given xi 

� Invest > Not-Invest 
� Ui(ai,aj,xi) is 

supermodular. 
� Monotone supermodular! 
� There exist greatest and 

smallest rationalizable 
strategies, which are 
� Bayesian Nash Equilibria 
� Monotone (isotone) 

00Not-Inv 

xi-1xiInvest 

Not-InvInvest 

00Not-Inv 

θ -1θInvest 

Not-InvInvest 

Monotone BNE 

� Best reply: 
Invest iff xi ≥ Pr(sj = Not-Invest|xi) 

� Assume supp(θ) = [a,b] where a < 0 < 1 < b. 
� xi < 0 ⇒ si(xi) = Not Invest 
� xi > 1 ⇒ si(xi) = Invest 
� A cutoff xi* s.t. 

� xi < xi * ⇒ si(xi) = Not Invest; xi > xi * ⇒ si(xi) = Invest; 
� Symmetry: x1* = x2* = x* 
� x* = Pr(sj = Not-Invest|x*) = Pr(xj < x*|xi =x*) = 1/2 
� “Unique” BNE, i.e., “dominance-solvable” 
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Questions 

� What is the smallest BNE? 
� What is the largest BNE? 
� Which strategies are rationalizable? 
� Compute directly. 

θ is not common knowledge 
but the noise is very small 

It is very likely that 

Not-Invest Invest 

θ 
1/2 
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Risk-dominance 
�	 In a 2 x 2 symmetric game, a strategy is said to be 

“risk dominant” iff it is a best reply when the other 
player plays each strategy with equal probabilities. 

Invest Not-Invest Invest is RD iff 
0.5θ + 0.5(θ−1) > 0 

Invest θ,θ θ −1, 0 
Ù θ > 1/2 

Not-Invest 0,θ−1 0,0 

Players play according to risk dominance!!!


Carlsson & van Damme
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Risk Dominance 
� Suppose that (A,A) and 

A B (B,B) are NE. 
� (A,A) is risk dominant if 

(u11-u21)(v11-v12) 
> (u22-u12) (v22-v21) 

� g1 
a = u11-u21, etc.u22,v22 

u21,v21B 

u12,v12u11,v11A 

� (A,A) risk dominant:
A B g1 

a g2 
a > g1 

b g2 
b 

g1 
b, g2 

b0,0B 

0,0g1 
a, g2 

aA � i is indifferent against sj; 
(A,A) risk dominant: 

s1 + s2 < 1 

Dominance, Risk-dominance regions 

� Dominance region: 
Di

a ={(u,v)| gi
a>0, gi

b<0} 
� Risk-dominance region:

Ra ={(u,v)| g1 

a>0 g2 
a>0; g1 

b, g2 
b>0 ⇒ s1 + s2 < 1}
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Model 

�	 Θ ⊆ Rm is open; (u,v) are continuously differentiable 
functions of θ w/ bounded derivatives; 

�	 prior on θ has a density h which is strictly positive, 
continuously differentiable, bounded. 

�	 Each player i observes a signal 
xi = θ + εηi 

�	 (η1, η2) is bounded, 
�	 Independent of θ, 
�	 Admits a continuous density 

Theorem 

(Risk-dominance v. rationalizability)

�	 Assume: 
� x is on a continuous curve C ⊆ Θ, 
� (u(c),v(c)) ∈ Ra for each c∈C, 
� (u(c),v(c)) ∈ Da for some c∈C. 

�	 Then, A is the only rationalizable action at x 
when ε is small. 
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“Public” Information 
� θ ~ N(y,τ2) and εηi ~ N(0,σ2) 
� Given xi, 

θ ~ N(rxi+(1-r)y, σ2r) 
xj ~ N(rxi+(1-r)y, σ2(r+1)) 

r = τ2/(σ2+τ2) 
� (Monotone supermodularity) monotone symmetric NE w/cutoff xc: 

c 
c c crx + (1− r )y = Pr(x j ≤ x | xi = x ) = Φ

⎛
⎜⎜ (1− r )(x − y ) ⎞

⎟⎟ 
⎝ σ r +1 ⎠ 

� Unique monotone NE (and rationalizable strategy) if 

rxc + (1− r )y − Pr(x j ≤ xc | xi = xc ) 
is increasing in xc whenever zero, i.e., 


σ2 < 2πτ4(r+1)
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Currency attacks 
Morris & Shin 

Model 
�	 Fundamental: θ in [0,1] 
�	 Competitive exchange rate: f(θ) 
�	 f is increasing 
�	 Exchange rate is pegged at e* ≥ f(1). 
�	 A continuum of speculators, who either 
� Attack, which costs t, or 
� Not attack 

�	 Government defends or not 
�	 The exchange rate is e* if defended, f(θ)

otherwise 
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Speculator’s Payoffs 

� Attack, not 
defended: 

e* − f(θ) − t 
� Attack, defended: 

-t 
� No attack: 0 

f 

e*Exchange rate 

e*-t 

θ θ


Government’s payoffs 

� Value of peg = v c(α,θ) 

� Cost of defending 
c(α,θ) 

where α is the ratio 
of speculators who 
attack 

� c is increasing in α, 
decreasing in θ 

θ 

v 

c(1,θ) 

c(0,θ) 

θ 
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Government’s strategy


� Government knows α and θ; 
� Defends the peg if 

v > c(α,θ) 
� Abandons it otherwise. 

θ is common knowledge 

00NoAttack 

e*-f(θ)-te*-f(θ)-tAttack 

NoAttackAttack 

θ < θ 
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θ is common knowledge 

00NoAttack 

−te*-f(θ)-tAttack 

NoAttackAttack 

θ > θ 

θ is common knowledge 

θ < θ < θ Multiple Equilibria!!! 

00NoAttack 

−te*-f(θ)-tAttack 

NoAttackAttack 
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θ is common knowledge


AttackNoAttack Multiple 
Equilibria 

θ 
θ θ


θ is not common knowledge


� θ is uniformly distributed on [0,1]. 
� Each speculator i gets a signal 

xi = θ + ηi 

� ηi’s are  independently and uniformly 
distributed on [– ε, ε] where ε > 0 is very 
small. 

� The distribution is common knowledge. 
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Government’s strategy 

� Government knows α and θ; 
� Defends the peg if 

v > c(α,θ) 
� Abandons it otherwise. 

Define: a(θ) = the minimum α for which G 
abandons the peg 

v = c(a(θ),θ) 

a(θ)


θ 
θ 
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� r = ratio of speculators who attack 
� u(Attack,r,θ) = e* - f(θ) – t if r ≥ a(θ) 

-t otherwise 
� U(No Attack,r,θ) = 0 

Speculator’s payoffs 

Unique Equilibrium 

� Equilibrium: Attack iff 
xi ≤ x*. 

� r(θ) = Pr(x ≤ x*|θ) 

θx*-ε 

r 

x*+ε 

1 

.5 - .5(θ – x*)/ε 

θ 

a 

θ* 

Abandon 
the peg.5- .5(θ*– x*)/ε = a(θ*) 

x* = θ*– ε[1- 2a(θ*)] 



�

θ* 

Utility from attack 

U(x*) =     (e*-f(θ))dθ – t 

θx*-ε 

r 

x*+ε 

1 

.5 - .5(θ – x*)/ε 

θ 

a 

θ* 

Abandon 
the peg x*-ε 

θ* 1 

2ε 

≈ [θ*-x*+ε](e*-f(θ*))/(2ε) – t 
= [1 – a(θ*)](e*-f(θ*)) – t 

U(x*) 

= 0 

[1 – a(θ*)](e*-f(θ*)) = t 

“Risk dominance”


� Suppose all strategies are equally likely 
� r is uniformly distributed on [0,1] 
� Expected payoff from Attack 

(1-a(θ))(e*-f(θ)) – t 
� Attack is “risk dominant” iff 

(1-a(θ))(e*-f(θ)) > t 
� Cutoff value θ*: 

(1-a(θ*))(e*-f(θ*)) = t 
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θ is not common knowledge 
but the noise is very small 

It is very likely that 

Attack NoAttack 

θ 

θ* 

Comparative statics – t 

� Cutoff value θ*: 
(1-a(θ*))(e*-f(θ*)) = t 

� LHS is decreasing in 
θ*. 

If transaction cost t 

increases, 


attack becomes

less likely! θ*(t’) θ*(t) θ 

LHS 

t 

t’ 
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Comparative statics – e* 

� Cutoff value θ*: 
(1-a(θ*))(e*-f(θ*)) = t 

� LHS is decreasing in θ* 
� and increasing in e* 

LHS(e*)If e* increases, 

attack becomes


more likely!

θ*(e*) θ*(e**) θ 

t 

LHS(e**) 

Comparative statics – c 

� Let c(α,θ) = γ C(α,θ) 
� Cutoff value θ*: 

(1-a(θ*))(e*-f(θ*)) = t 
� LHS is decreasing in θ* 
� and decreasing in a 
� i.e., increasing in γ 

LHS(γ) 

If γ increases, 
attack becomes 

θ*(γ) θ∗(γ’) θ 
more likely! 

t 

LHS(γ’) 
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Bank Runs


Model 

� Dates: 0,1,2 
� Each depositor has 1 unit good 
� A bank invests either in 

� Cash with return 1 at t = 1; or in 
� Illiquid asset (IA) with return R > 1 at t =2. 

� Consumption: c1, c2 
� Two types of depositor 

� Impatient: log(c1); measure λ 
� Patient: log(c1+c2); measure 1−λ 

� If proportion of L invested in IA withdrawn at t=1, the
return is Re–L. 

Assume: λ is in cash. 
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Actions 

� An impatient consumer withdraws at t=1. 
� A (patient) consumer either withdraws at t=1 and 

gets 1 unit of cash, with payoff 
u(1) = log(1) = 0, 

� or withdraws at t =2 and gets Re-L where L is the 
ratio of patient consumers who withdraws at t=1. 

� Write r = log(R). 
� The payoff from late withdrawal is 

u(2) = r – L. 

Complete Information 

�	 Multiple equilibria: 
�	 All patients consumers withdraw at t = 2, 

where L = 0. 
�	 All patients consumers withdraw at t = 1, 

where L = 1. 
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Incomplete Information 

� r is distributed with N(r,1/α), where 
0 < r < 1. 

� Each depositor i gets a signal 
xi = r + εi 

�	 εi iid with N(0,1/β). 
�	 The distribution is common knowledge. 

This is identical to the partnership game!! 
(when β → ∞) 

Theorem 

�	 Write ρ = (αr+βx)/(α+β) for the expected 
value of r given x. 

�	 Write γ = α2(α+β)/(αβ+2β2). 
�	 If γ < 2π, there is a unique equilibrium; a 

patient depositor withdraws at t = 1 iff ρ < ρ*, 
where 

ρ* = Φ(γ.5(ρ*−r)). 
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General Supermodular Global Games 
Frankel, Morris, and Pauzner 

Model 

� N = {1,…,n} players 
� Ai ⊆ [0,1], 

� countable union of closed intervals 
� 0,1 ∈Ai 

� Uncertain payoffs ui(ai,a-i,θ) 
� continuous with bounded derivatives 

� 1-dimensional payoff uncertainty: θ ∈ R 
� Each player i observes a signal 

xi = θ + εηi 
� (θ, η1, η2) are independent with atomless densities 
� (η1, η2) bounded 
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Main Assumptions 

Let Dui(ai,a’i,a-i,θ) = ui(ai,a-i,θ) - ui(a’i,a-i,θ) 
� Strategic complementarities: ai ≥ a’i & a-i ≥ a’-i 

⇒ Dui(ai,a’i,a-i,θ) ≥ Dui(ai,a’i,a’-i,θ) 
�	 Dominance regions: 
� 0 is dominant when θ is very small 
� 1 is dominant when θ is very large 

� State monotonicity: outside dominance 
regions, ∃K>0: ∀ ai ≥ a’i ∀ θ ≥ θ’, 

Dui(ai,a’i,a-i,θ) - Dui(ai,a’i,a-i,θ’) ≥ K(ai - a’i )(θ - θ’) 

Theorem (Limit Uniqueness) 

�	 In the limit ε → 0, there is a “unique” 
rationalizable strategy, which is increasing. 

�	 i.e., there exists an increasing pure strategy 
profile s* such that if for each ε > 0, sε is 
rationalizable at ε, then almost everywhere 

Limε→0 si 
ε(xi) = si*(xi). 
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Limit Solution 

�	 (s1*(x),s2*(x)) is a Nash equilibrium of the 
complete information game in which it is 
common knowledge that θ=x. 

Noise dependence 

�	 There exists a game satisfying the FPM 
assumptions in which for different noise 
distributions, different equilibria are selected 
in the limit as the signal errors vanish. 

�	 There are conditions under which s* is 
independent of the noise distributions. 
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