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Road map

Theory
1. 2 x 2 Games (Carlsson and van Damme)
2. Continuum of players (Morris and Shin)
3. General supermodular games (Frankel, Morris,
and Pauzner)
Applications
1. Currency attacks
2. Bankruns




Motivation

Outcomes may differ in similar environments.
This is explained by multiple equilibria
(w/strategic complementarity)

o Investment/Development

o Search

o Bank Runs

o Currency attacks

o Electoral competition...

But with introduction of incomplete information,
such games tend to be dominance-solvable

A simple partnership game

Invest Not-Invest

Invest 0,0 0-1,0

Not-Invest 0,0-1 0,0




|0 is common knowledge

0<0

Invest

Not-Invest

‘ 0 is common knowledge
0> 1

Invest Notlnvest

Invest

Notlnvest




|0 is common knowledge

<
0<0<1 Multiple Equilibria!!!
Invest Not-Invest
Invest 0,0 &= 0-1,0
T §
Not-Invest 0,0-1 T 0,0

‘ 0 is common knowledge

Not-Invest Multiple Invest
Equilibria




0 is not common knowledge

0 is uniformly distributed over a large interval
Each player i gets a signal

X; =0 +en,
(n4, M,) is bounded,
Independent of 6,
iid with continuous F (common knowledge),
E[n]=0.

O 0O O O

Conditional Beliefs given x;

0=y X —en,
i.e. Pr(6 < 6|x;) = 1-F((x-0)/¢);
X =q X; + &(n;n;)
Pr(x; < x|x;) = Pr(e(n;— n;) <X —X));
F(6,%x)) is decreasing in X
E[6]x] = X




Payoffs given x

Invest Not-Inv

Invest X; X-1

Not-Inv 0 0

Invest Not-Inv

Invest > Not-Invest
Ui(a;,a;,x) is
supermodular.

Monotone supermodular!

There exist greatest and
smallest rationalizable
strategies, which are

Invest 0 0 -1 o Bayesian Nash Equilibria
o Monotone (isotone)
Not-Inv 0 0
Monotone BNE
Best reply:

Invest iff x; > Pr(s;= Not-Invest|x)
Assume supp(0) = [a,b]wherea<0<1<bh.

X; < 0 = si(x;) = Not Invest

X > 1= s,(x) = Invest
A cutoff x* s.t.

a X < X* = s(x;)) = Not Invest; x; > x* = si(x;) = Invest;

Symmetry: x,* = x,* = X"

X* = Pr(s;= Not-Invest|x*) = Pr(x < x*[x=x*) = 1/2
“Unique” BNE, i.e., “dominance-solvable”




‘ Questions

= What is the smallest BNE?

= What is the largest BNE?

= Which strategies are rationalizable?
= Compute directly.

‘Gisnotconmrmnlknovﬂedge
but the noise is very small

It is very likely that

Not-Invest
Invest

1/2




Risk-dominance

In a 2 x 2 symmetric game, a strategy is said to be
“risk dominant” iff it is a best reply when the other
player plays each strategy with equal probabilities.

Invest Not-Invest

Invest 0,0 0-1,0

Not-Invest| (,0—1 0,0

Invest is RD iff
0.50 +0.5(6-1)>0

<0>1/2

Players play according to risk dominance!!!

Carlsson & van Damme




Risk Dominance

Suppose that (A,A) and

A B (B,B) are NE.
(A,A) is risk dominant if
A UspVigg | UgaiVi2 (Ugq=Up1)(V44-Vyp)
> (Ugp-Uyp) (VaoVay)
Usq,V 227U12) V22V
B 21:¥21 u22,V22 g1a = U11-U21, etc.
(A,A) risk dominant:
A B 9:°9,° > 0,°9,"
A 99,2 0,0 i is indifferent against s;;
192 ’ (AA) risk dominant:

Dominance, Risk-dominance regions

Dominance region:
D2 ={(u,v) >0, g°<0}
Risk-dominance region:
R2 ={(u,v)| 9,2>0 g,>>0; 9", 9,">0 = 5, + 5, < 1}




Model

® < R™Mis open; (u,v) are continuously differentiable
functions of 6 w/ bounded derivatives;

prior on 6 has a density h which is strictly positive,
continuously differentiable, bounded.

Each player i observes a signal
X =0+en

a (n4,My) is bounded,

o Independent of 6,

o Admits a continuous density

Theorem
(Risk-dominance v. rationalizability)

Assume:

o X is on a continuous curve C ¢ 0,

o (u(c),v(c)) € Ra for each ceC,

o (u(c),v(c)) € D2 for some ceC.

Then, A is the only rationalizable action at x
when ¢ is small.
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“Public” Information

0 ~ N(y,t?) and en; ~ N(0,6?)
Given x;,
0 ~ N(rx+(1-r)y, o?r)
X, ~ N(rx;+(1-r)y, o(r+1))
r = 12/(c?+12)

(Monotone supermodularity) monotone symmetric NE w/cutoff x¢:

X° +(1-r)y =Pr(x; <x°|x, =x°)=d{(1_r)(xc_y)

_ o _ or +1
Unique monotone NE (and rationalizable strategy) if

X +(1-r)y —Pr(x; <x°|x; =x°)

is increasing in x¢ whenever zero, i.e.,
o2 < 2nti(r+1)

|

0 — T T I
0.0 0.2 0.4 0.6 0.8 2

Figure 3.1: Parameter Range for Unigue Equilibrinm




Currency attacks
Morris & Shin

Model

Fundamental: 8 in [0,1]

Competitive exchange rate: f(0)

fis increasing

Exchange rate is pegged at e* = f(1).
A continuum of speculators, who either

o Attack, which costs t, or
o Not attack

Government defends or not

The exchange rate is e* if defended, f(0)
otherwise
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Speculator’s Payoffs

Exchange rate

iy |
e :/—

Attack, not
defended:

e* —f(0) -t
Attack, defended:
-1
No attack: O

Government’s payoffs

Value of peg = v ¢(a.,0)

Cost of defending
c(a.0)
where a is the ratio

of speculators who
attack

c is increasing in a,
decreasing in 0

\

[

c(0,0)

i |---
D
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 Government’s strategy

= Government knows o and 6;
= Defends the peg if

v > c(a,0)
= Abandons it otherwise.

‘ 0 is common knowledge

0<0

Attack

Attack

NoAttack

14



|0 is common knowledge

Attack

NoAttack

‘ 0 is common knowledge

§ —
0<0<0 Multiple Equilibria!!!
Attack NoAttack
Attack e*-f(0)-t | @m —t
3 |
NoAttack 0 = 0
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0 is common knowledge

Multiple Attack

Equilibria

|
D |

0 is not common knowledge

0 is uniformly distributed on [0,1].
Each speculator i gets a signal

X =0+m;
n,’s are independently and uniformly

distributed on [- ¢, €] where ¢ > 0 is very
small.

The distribution is common knowledge.
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Government’s strategy

Government knows o and 6;
Defends the peg if

vV > c(a,0)
Abandons it otherwise.

Define: a(0) = the minimum o for which G
abandons the peg

v =c(a(0),0)

a(0)

s
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| Speculator’s payoffs

= r = ratio of speculators who attack
= U(Attack,r,0) = e* - f(0) — tif r = a(0)

-t otherwise
= U(No Attack,r,0) =0

| Unique Equilibtium

= Equilibrium: Attack iff
X < X*.
= r(0) = Pr(x < x*|6)

5-.5(0"— x*)/s = a(0*)
X* = 0*— g[1- 2a(0")]
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Utility from attack

o
U(x*) =lj (e*-£(0))d6 — t

€

[0%-x*+g](e*-F(6%))/(2¢) — t
[1—a(0%)](e*-f(6%)) —t
=0

U(x*) =

Q X*I-S é* X*I+8 0

[1—a(6")](e*-f(6%)) =

“Risk dominance”

= Suppose all strategies are equally likely
= ris uniformly distributed on [0,1]
= Expected payoff from Attack
(1-a(6))(e*-1(6)) — t
= Attack is “risk dominant” iff
(1-a(6))(e*-f(6)) > t
= Cutoff value 6*:
(1-a(6%))(e™-f(67)) = t
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‘ 0 is not common knowledge
but the noise is very small

It is very likely that

Attack NoAttack

| Comparative statics — t

= Cutoff value 0*:
(1-a(0™))(e*-f(6%)) = t

= LHS is decreasing in \
0*.

If transaction cost t
increases,

attack becomes

less likely! 0*(t") e*(t)
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| Comparative statics — e*

= Cutoff value 6*:
(1-a(6))(e*-f(6%)) = t

» LHS is decreasing in 6*

= and increasing in e*

LHS(e**)

If e* increases,
attack becomes

more likely!

o*e*) 0%e™) O

| Comparative statics — ¢

Let c(a,0) =y C(a,0)
Cutoff value 6*:
(1-a(6))(e™-f(6%)) = t
LHS is decreasing in 6*
and decreasing in a

LHS(Y)

l.e., increasing in y

If y increases,

attack becomes
more likely!

0*(v) o+y) ©
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Bank Runs

Model

Dates: 0,1,2
Each depositor has 1 unit good
A bank invests either in

o Cash withreturn 1 att=1; orin
o lliquid asset (IA) with return R > 1 at t =2.

Consumption: ¢, ¢,
Two types of depositor

o Impatient: log(c,); measure A
o Patient: log(c,+c,); measure 1-A

If proportion of L invested in IA withdrawn at t=1, the
return is Re .

Assume: A is in cash.
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Actions

An impatient consumer withdraws at t=1.

A (patient) consumer either withdraws at t=1 and
gets 1 unit of cash, with payoff

u(1) =log(1) =0,
or withdraws at t =2 and gets Re* where L is the
ratio of patient consumers who withdraws at t=1.
Write r = log(R).
The payoff from late withdrawal is
u2)=r-L.

Complete Information

Multiple equilibria:
All patients consumers withdraw att = 2,
where L = 0.

All patients consumers withdraw att =1,
where L = 1.
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Incomplete Information

r is distributed with N(r,1/a), where
O<r<1.

Each depositor i gets a signal
X, =T g

g iid with N(0,1/B).

The distribution is common knowledge.

This is identical to the partnership game!!
(when 3= )

Theorem

Write p = (ar+Bx)/(a+p) for the expected
value of r given x.

Write y = a2(a+B)/(ap+2p3).

If y < 2w, there is a unique equilibrium; a
patient depositor withdraws at t = 1 iff p < p*,
where

p* = D(y>(p*-1)).
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General Supermodular Global Games
Frankel, Morris, and Pauzner

Model

N ={1,...,n} players
Ai c [01111
o countable union of closed intervals
o 0,1 eA
Uncertain payoffs u(a;,a_,0)
o continuous with bounded derivatives
1-dimensional payoff uncertainty: 6 € R
Each player i observes a signal
X =0+en
a (8, n4, M) are independent with atomless densities
a (n4, ny) bounded

25



Main Assumptions

Let Dui(a;,a’,a;,0) = ui(a;,a,;,0) - u(a’;,a,;,0n)
Strategic complementarities: a;> a’; & a;> a’;
= Dui(a;,a’,a;,0) = Duy(a,a’,a’;,0)

Dominance regions:

o 0 is dominant when 6 is very small

o 1 is dominant when 0 is very large

State monotonicity: outside dominance

regions, 3IK>0: V a,>a’, vV 6> 0/,
Dui(a,a’,a;,0) - Dui(a;,a’;,a;,0’) > K(a,- a’;)(0 - 0')

Theorem (Limit Uniqueness)

In the limit ¢ — 0, there is a “unique”
rationalizable strategy, which is increasing.

I.e., there exists an increasing pure strategy
profile s* such that if for each ¢ > 0, st is
rationalizable at ¢, then almost everywhere

Lim,_o Si%(%;) = S;*(%;)-
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Limit Solution

(S17(x),s,*(x)) is a Nash equilibrium of the
complete information game in which it is
common knowledge that 6=x.

Noise dependence

There exists a game satisfying the FPM
assumptions in which for different noise
distributions, different equilibria are selected
in the limit as the signal errors vanish.

There are conditions under which s* is
independent of the noise distributions.
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