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1. Normal-Form Games 

A normal (or strategic) form game is a triplet (N, S, U) with the following properties 

•	 N = {1, 2, . . . , n} is a finite set of players 

•	 Si is the set of pure strategies of player i; S = S1 × . . . × Sn


ui : S R is the payoff function of player i; u = (u1, . . . , un).
• → 

Player i ∈ N receives payoff ui(s) when s ∈ S is played. The game is finite if S is finite. 

The structure of the game is common knoweldge: all players know (N,S, U), and know 

that their opponents know it, and know that their opponents know that they know, and so 

on. 

1.1. Detour on common knowledge. Common knowledge looks like an innocuous as­

sumption, but may have strong consequences in some situations. Consider the following 

story. Once upon a time, there was a village with 100 married couples. The women had 

to pass a logic exam before being allowed to marry. The high priestess was not required to 

take that exam, but it was common knowledge that she was truthful. The village was small, 

so everyone would be able to hear any shot fired in the village. The women would gossip 

about adulterous relationships and each knows which of the other husbands are unfaithful. 

However, no one would ever inform a wife about her cheating husband. 

The high priestess knows that some husbands are unfaithful and decides that such im­

morality should not be tolerated any further. This is a successful religion and all women 

agree with the views of the priestess. 

The priestess convenes all the women at the temple and publicly announces that the well­

being of the village has been compromised—there is at least one cheating husband. She 
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also points out that even though none of them knows whether her husband is faithful, each 

woman knows about the other unfaithful husbands. She orders that each woman shoot her 

husband on the midnight of the day she finds out. 39 silent nights went by and on the 

40th shots were heard. How many husbands were shot? Were all the unfaithful husbands 

caught? How did some wives learn of their husband’s infidelity after 39 nights in which 

nothing happened? 

Since the priestess was truthful, there must have been at least one unfaithful husband in the 

village. How would events have evolved if there was exactly one unfaithful husband? His wife, 

upon hearing the priestess’ statement and realizing that she does not know of any unfaithful 

husband, would have concluded that her own marriage must be the only adulterous one and 

would have shot her husband on the midnight of the first day. Clearly, there must have 

been more than one unfaithful husband. If there had been exactly two unfaithful husbands, 

then each of the two cheated wives would have initially known of exactly one unfaithful 

husband, and after the first silent night would infer that there were exactly two cheaters and 

her husband is one of them. (Recall that the wives are all perfect logicians.) The unfaithful 

husbands would thus both be shot on the second night. As no shots were heard on the first 

two nights, all women concluded that there were at least three cheating husbands. . . Since 

shootings were heard on the 40th night, it must be that exactly 40 husbands were unfaithful 

and they were all exposed and killed simultaneously. 

For any measurable space X we denote by Δ(X) the set of probability measures (or 

distributions) on X. 1 A mixed strategy for player i is an element σi of Δ(Si). A correlated 

strategy profile σ is an element of Δ(S). A strategy profile σ is independent (or mixed) 

if σ ∈ Δ(S1) × . . . × Δ(Sn), in which case we write σ = (σ1, . . . , σn) where σi ∈ Δ(Si) 

denotes the marginal of σ on Si. A correlated belief for player i is an element σ−i of 

Δ(S−i). The set of independent beliefs for i is 
�

j Δ(Sj). It is assumed that player i =i 

has von Neumann-Morgenstern preferences over Δ(S) and ui extends to Δ(S) as follows 

ui(σ) = 
� 

σ(s)ui(s). 
s∈S 

1In most of our applications X is either finite or a subset of an Euclidean space. 



3 NON-COOPERATIVE GAMES 

2. Dominated Strategies 

Are there obvious predictions about how a game should be played? 

Example 1 (Prisoners’ Dilemma). Two persons are arrested for a crime, but there is not 

enough evidence to convict either of them. Police would like the accused to testify against 

each other. The prisoners are put in different cells, with no communication possibility. Each 

suspect is told that if he testifies against the other (“Defect”), he is released and given a reward 

provided the other does not testify (“Cooperate”). If neither testifies, both are released (with 

no reward). If both testify, then both go to prison, but still collect rewards for testifying. Each 

C D 

C 1, 1 −1, 2 

D 2,−1 0, 0∗ 

prisoner is better off defecting regardless of what the other does. Cooperation is a strictly 

dominated action for each prisoner. The only feasible outcome is (D,D), which is Pareto 

dominated by (C, C). 

Example 2. Consider the game obtained from the prisoners’ dilemma by changing player 

1’s payoff for (C,D) from −1 to 1. No matter what player 1 does, player 2 still prefers 

C D 

C 1, 1 1, 2∗ 

D 2,−1 0, 0 

D to C. If player 1 knows that 2 never plays C, then he prefers C to D. Unlike in the 

prisoners’ dilemma example, we use an additional assumption to reach our prediction in this 

case: player 1 needs to deduce that player 2 never plays a dominated strategy. 

Formally, a strategy si ∈ Si is strictly dominated by σi ∈ Δ(Si) if 

ui(σi, s−i) > ui(si, s−i),∀s−i ∈ S−i. 
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We can iteratively eliminate dominated strategies, under the assumption that “I know that 

you know that I know. . . that I know the payoffs and that you would never use a dominated 

strategy.”2 

Definition 1. For all i ∈ N , set S0 = Si and define Si
k recursively by i 

Sk = | � ∃σi ∈ Δ(Sk−1), ui(σi, s > ui(si, s −ii {si ∈ Si
k−1 

i −i) −i),∀s−i ∈ Sk−1 }. 

The set of pure strategies of player i that survive iterated deletion of strictly dominated 

strategies is Si
∞ = ∩k≥0Si

k . The set of surviving mixed strategies is 

{σi ∈ Δ(Si
∞)| � ∃σi

� ∈ Δ(Si
∞), ui(σi

�, s−i) > ui(σi, s −i ∈ S∞−i), ∀s −i}. 

Note that in a finite game the elimination procedure ends in a finite number of steps, so 

S∞ is simply the set of surviving strategies at the last stage. 

The definition above assumes that at each iteration all dominated strategies of each player 

are deleted simultaneously. Clearly, there are many other iterative procedures that can be 

used to eliminate strictly dominated strategies. However, the limit set S∞ does not depend 

on the particular way deletion proceeds.3 The intuition is that a strategy which is dominated 

at some stage is dominated at any later stage. Furthermore, the outcome does not change if 

we eliminate strictly dominated mixed strategies at every step. The reason is that a strategy 

is dominated against all pure strategies of the opponents if and only if it is dominated against 

all their mixed strategies. Eliminating mixed strategies for player i at any stage does not 

affect the set of strictly dominated pure strategies for any player j = i at the next stage. 

3. Rationalizability 

Rationalizability is a solution concept introduced independently by Bernheim (1984) and 

Pearce (1984). Like iterated strict dominance, rationalizability derives restrictions on play 

from the assumptions that the payoffs and rationality of the players are common knowledge. 

Dominance: what actions should a player never use? Rationalizability: what strategies can 

2Play the “guess 2/3 of the average” game with strategy space {1, 2, . . . , 100}. Talk about the Keynesian 

beauty contest. Note that playing 1 is a winning strategy only if there is common knowledge of rationality, 

which is not usually true in class. 
3This property does not hold for weakly dominated strategies. 
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a rational player choose? It is not rational for a player to choose a strategy that is not a 

best response to some beliefs about his opponents’ strategies. 

What is a “belief”? In Bernheim (1984) and Pearce (1984) each player i’s beliefs σ−i 

about the play of j = i must be independent, i.e., σ =i Δ(Sj). Independent beliefs are � −i ∈ 
�

j �

consistent with the definition of mixed strategies, but in the context of an iterative procedure 

entail common knowledge of the fact that each player holds such beliefs. Alternatively, we 

may allow player i to believe that the actions of his opponents are correlated, i.e., any 

σ−i ∈ Δ(S−i) is a possibility. The two definitions have different implications for n ≥ 3. We 

focus on the case with correlated beliefs. 

We can again iteratively develop restrictions imposed by common knowledge of the payoffs 

and rationality to obtain the definition of rationalizability. 

Definition 2. Set S0 = S and let Sk be given recursively by 

Sk = {si ∈ Sk−1 |∃σ−i ∈ Δ(Sk−1), ui(si, σ−i) ≥ ui(s
� , σ i

� ∈ Sk−1 
i i −i i −i), ∀s i }. 

The set of correlated rationalizable strategies for player i is Si
∞ = ∩k≥0Si

k . A mixed 

strategy σi ∈ Δ(Si) is rationalizable if there is a belief σ−i ∈ Δ(S∞ s.t. ui(σi, σ−i) −i) ≥ 

ui(si, σ−i) for all si ∈ Si
∞. 

The definition of independent rationalizability replaces Δ(Sk−1) and Δ(S∞) above −i −i

with 
�

j=i Δ(Sj
k−1) and 

�
j=i Δ(Sj

∞), respectively. 

Definition 3. A strategy s∗i ∈ Si is a best response to a belief σ−i ∈ Δ(S−i) if 

ui(s
∗
i , σ−i) ≥ ui(si, σ−i),∀si ∈ Si. 

We say that a strategy si is never a best response for player i if it is not a best response 

to any σ−i ∈ Δ(S−i). Recall that a strategy si of player i is strictly dominated if there 

exists σi ∈ Δ(Si) s.t. ui(σi, s−i) > ui(si, s−i),∀s−i ∈ S−i. 

Theorem 1. In a finite game, a strategy is never a best response if and only if it is strictly 

dominated. 

Proof. Clearly, a strategy si strictly dominated for player i by some σi cannot be a best 

response for any belief σ−i ∈ Δ(S−i) as σi yields a strictly higher payoff than si against any 

such σ−i. 



6 MIHAI MANEA 

We are left to show that a strategy which is never a best response must be strictly domi­

nated. We prove that any strategy si of player i which is not strictly dominated must be a 

best response for some beliefs. Define the set of “dominated payoffs” for i by 

D = {x ∈ R|S−i||∃σi ∈ Δ(Si), x ≤ ui(σi, )}. ·

Clearly D is non-empty, closed and convex. Also, ui(si, ) does not belong to the interior of ·
D because it is not strictly dominated by any σi ∈ Δ(Si). By the supporting hyperplane 

theorem, there exists α ∈ R|S−i| different from the zero vector s.t. α ui(si, ) ≥ α x, ∀x ∈ D. · · · 
In particular, α ui(si, ) ≥ α ui(σi, ),∀σi ∈ Δ(Si). Since D is not bounded from below, · · · ·
each component of α needs to be non-negative. We can normalize α so that its components 

sum to 1, in which case it can be interpreted as a belief in Δ(S−i) with the property that 

ui(si, α) ≥ ui(σi, α),∀σi ∈ Δ(Si). Thus si is a best response to α. � 

Corollary 1. Correlated rationalizability and iterated strict dominance coincide. 

Theorem 2. For every k ≥ 0, each si ∈ Sk is a best response (within Si) to a belief ini 

Δ(Sk ).−i

Proof. Fix si ∈ Si
k . We know that si is a best response within Si

k−1 to some σ−i ∈ Δ(Sk−1).−i 

If si was not a best response within Si to σ−i, let s
�
i be such a best response. Since si is a 

best response within Si
k−1 to σ−i, and si

� is a strictly better response than si to σ−i, we need 

s� ∈/ Sk−1 . This contradicts the fact that s�i is a best response against σ−i, which belongs to i i 

Δ(Sk−1). �−i 

Corollary 2. Each si ∈ Si
∞ is a best response (within Si) to a belief in Δ(S∞).−i

Theorem 3. S∞ is the largest set Z1 × . . . × Zn with Zi ⊂ Si, ∀i ∈ N s.t. each element in 

Zi is a best response to a belief in Δ(Z−i) for all i. 

Proof. Clearly S∞ has the stated property by Theorem 2. Suppose that there exists Z1 × 

. . . × Zn �⊂ S∞ satisfying the property. Consider the smallest k for which there is an i such 

that Zi �⊂ Sk . It must be that k ≥ 1 and Z−i ⊂ Sk−1 . By assumption, every element in Zii −i 

is a best response to an element of Δ(Z−i) ⊂ Δ(Sk−1), contradicting Zi �⊂ Si
k . �−i 
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Example 3 (Rationalizability in Cournot duopoly). Two firms compete on the market for 

a divisible homogeneous good. Each firm i = 1, 2 has zero marginal cost and simultaneously 

decides to produce an amount of output qi ≥ 0. The resulting price is p = max(0, 1−q1−q2). 

Hence, if q1 + q2 ≤ 1, the profit of firm i is given by qi(1 − q1 − q2). The best response 

correspondence of firm i is Bi(qj) = (1 − qj)/2 (j = 3 − i). If i knows that qj � q then 

Bi(qj) � (1 − q)/2. 

We know that qi ≥ q0 = 0 for i = 1, 2. Hence qi ≤ q1 = Bi(q
0) = (1 − q0)/2 for all i. But 

then qi ≥ q2 = Bi(q
1) = (1 − q1)/2 for all i. . . We obtain 

∀i, q0 ≤ q 2 ≤ . . . ≤ q 2k ≤ . . . ≤ qi ≤ . . . ≤ q 2k+1 ≤ . . . ≤ q 1 , 

where q2k = 
�k 1/4l = (1 − 1/4k)/3 and q2k+1 = (1 − q2k)/2 for all k ≥ 0. Clearly, l=1 

limk→∞ q
k = 1/3, hence the only rationalizable strategy for firm i is qi = 1/3. This is also 

the unique Nash equilibrium, which we define next. 

4. Nash Equilibrium 

Many games are not solvable by iterated strict dominance or rationalizability. The concept 

of Nash (1950) equilibrium has more bite in some situations. The idea of Nash equilibrium 

was implicit in the particular examples of Cournot (1838) and Bertrand (1883) at an informal 

level. 

Definition 4. A mixed-strategy profile σ∗ is a Nash equilibrium if for each i ∈ N 

ui(σi 
∗, σ∗ ) ≥ ui(si, σ

∗ ),∀si ∈ Si.−i −i

Note that if a player uses a nondegenerate mixed strategy in a Nash equilibrium (one 

that places positive probability weight on more than one pure strategy) then he must be 

indifferent between all pure strategies in the support. Of course, the fact that there is no 

profitable deviation in pure strategies implies that there is no profitable deviation in mixed 

strategies either. 

Example 4 (Matching Pennies). Pure strategy equilibria do not always exist. We will es­

tablish that equilibria in mixed strategies always exist. 



8 MIHAI MANEA 

H T 

H 1,−1 −1, 1 

T −1, 1 1,−1 

Nash equilibria are “consistent” predictions of how the game will be played—if all play­

ers predict that a specific Nash equilibrium will arise then no player has incentives to play 

differently. Each player must have correct “conjectures” about the strategies of their op­

ponents and play a best response to his conjecture. Formally, Aumann and Brandenburger 

(1995) provide a framework that can be used to examine the epistemic foundations of Nash 

equilibrium. The primitive of their model is an interactive belief system in which each 

player has a possible set of types, which correspond to beliefs about the types of the other 

players, a payoff for each action, and an action selection. Aumann and Brandenburger show 

that in a 2-player game, if the game being played (i.e., both payoff functions), the rationality 

of the players, and their conjectures are all mutually known, then the conjectures constitute 

a (mixed strategy) Nash equilibrium. Thus common knowledge plays no role in the 2-player 

case. However, for games with more than 2 players, we need to assume additionally that 

players have a common prior and and that conjectures are commonly known. 

So far, we have motivated our solution concepts by presuming that players make pre­

dictions about their opponents’ play by introspection and deduction, using knowledge of 

their opponents payoffs, knowledge that the opponents are rational, knowledge about this 

knowledge. . . Alternatively, we may assume that players extrapolate from past observations 

of play in “similar” games, with either current opponents or “similar” ones. They form 

expectations about future play based on past observations and adjust their actions to maxi­

mize their current payoffs with respect to these expectations. The idea of using adjustment 

processes to model learning originates with Cournot (1838). In that setting (Example 3), 

players take turns setting their outputs, each player choosing a best response to the oppo­

nent’s last period action. Alternatively, we can assume simultaneous belief updating, best 

responding to sample average play, populations of players being anonymously matched, etc. 

If the process converges to a particular steady state, then the steady state is a Nash equi­

librium. While convergence occurs in Example 3, this is not always the case. How sensitive 

is the convergence to the initial state? If convergence obtains for all initial strategy profiles 
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sufficiently close to the steady state, we say that the steady state is asymptotically stable. 

See figures 1.13-1.15 (pp. 24-26) in FT. The Shapley (1964) cycling example is interesting. 

Also, adjustment processes are myopic and do not offer a compelling description of behavior. 

L M R 

U 

M 

D 

0, 0 0, 1 1, 0 

1, 0 0, 0, 0, 1 

0, 1 1, 0 0, 0 

Definitely such processes do not provide good predictions for behavior in the actual repeated 

game. 

5. Existence and Continuity of Nash Equilibria 

Follow Muhamet’s slides. We need the following result for future reference. 

Theorem 4. Suppose that each Si is a convex and compact subset of an Euclidean space and 

that each ui is continuous in s and quasi-concave in si. Then there exists a pure strategy 

Nash equilibrium. 

6. Bayesian Games 

When some players are uncertain about the characteristics or types of others, the game is 

said to have incomplete information. Most often a player’s type is simply defined by his 

payoff function. More generally, types may embody any private information that is relevant 

to players’ decision making. This may include, in addition to the player’s payoff function, 

his beliefs about other players’ payoff functions, his beliefs about what other players believe 

his beliefs are, and so on. The idea that a situation in which players are unsure about each 

other’s payoffs and beliefs can be modeled as a Bayesian game, in which a player’s type 

encapsulates all his uncertainty, is due to Harsanyi (1967, 1968) and has been formalized by 

Mertens and Zamir (1985). For simplicity, we assume that a player’s type is his own payoff 

and the type captures all the private information. 

A Bayesian game is a list B = (N, S, Θ, u, p) with 

• N = {1, 2, . . . , n} is a finite set of players 

• Si is the set of pure strategies of player i; S = S1 × . . . × Sn 
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• Θi is the set of types of player i; Θ = Θ1 × . . . × Θn 

• ui : Θ × S → R is the payoff function of player i; u = (u1, . . . , un) 

• p ∈ Δ(Θ) is a common prior (we can relax this assumption). 

We often assume that Θ is finite and the marginal pi(θi) is positive for each type θi. 

Example 5 (First Price Auction with I.I.D. Private Values). One object is up for sale. 

Suppose that the value θi of player i ∈ N for the object is uniformly distributed in Θi = [0, 1] 

and that the values are independent across players. This means that if θ̃i ∈ [0, 1], ∀i then 

˜ ˜p(θi ≤ θi,∀i) = 
�

i θi. Each player i submits a bid si ∈ Si = [0,∞). The player with the 

highest bid wins the object and pays his bid. Ties are broken randomly. Hence the payoffs 

are given by


ui(θ, s) = 

⎧
⎪

⎩
⎨
⎪

θi−si if si ≥ sj, ∀j ∈ N 
si|{j∈N | =sj}| 

0 otherwise.


Example 6 (An exchange game). Each player i = 1, 2 receives a ticket on which there is a 

number in some finite set Θi ⊂ [0, 1]. The number on a player’s ticket represents the size of a 

prize he may receive. The two prizes are independently distributed, with the value on i’s ticket 

distributed according to Fi. Each player is asked independently and simultaneously whether 

he wants to exchange his prize for the other player’s prize, hence Si = {agree, disagree}. 
If both players agree then the prizes are exchanged; otherwise each player receives his own 

prize. Thus the payoff of player i is 

ui(θ, s) = 

⎧
⎪

⎩
⎨
⎪

θ3−i if s1 = s2 = agree 

θi otherwise. 

In the normal form representation G(B) of the Bayesian game B player i has 

strategies (si(θi))θi∈Θi 
∈ SΘi and utility function Ui given by i 

Ui((si(θi))θi∈Θi,i∈N) = Ep(ui(θ, s1(θ1), . . . , sn(θn))). 

The agent-normal form representation AG(B) of the Bayesian game B has player 

set ∪iΘi. The strategy space of each player θi is Si. A strategy profile (sθi
)θi∈Θi,i∈N yields 

utility 

Uθi
((sθi

)θi∈Θi,i∈N) = Ep(ui(θ, sθ1 , . . . , sθn )|θi) 
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for player θi. For the conditional expectation to be well-defined we need pi(θi) > 0. 

Definition 5. A Bayesian Nash equilibrium of B is a Nash equilibrium of G(B). 

Proposition 1. If pi(θi) > 0 for all θi ∈ Θi, i ∈ N , a strategy profile is a Nash equilibrium 

of G(B) iff it is a Nash equilibrium of AG(B) (strategies are mapped across the two games 

by si(θi) sθi
). → 

Theorem 5. Suppose that 

N	 and Θ are finite • 

•	 each Si is a compact and convex subset of an Euclidean space


each ui is continuous in s and concave in si.
• 

Then B has a pure strategy Bayesian Nash equilibrium. 

Proof. By Proposition 1, it is sufficient to show that AG(B) has a pure Nash equilibrium. 

The latter follows from Theorem 4. We use the concavity of ui in si to show that the 

corresponding Uθi 
is quasi-concave in sθi

. Quasi-concavity of ui in si does not typically 

imply quasi-concavity of Uθi 
in sθi 

because Uθi 
is an integral of ui over variables other than 

sθi
. 4 � 

We can show that the set of Bayesian Nash equilibria of Bx is upper-hemicontinuous with 

respect to x when payoffs are given by ux, assumed continuous in x in a compact set X, if S, Θ 

are finite. Indeed, BNE(Bx) = NE(AG(Bx)). Furthermore, we have upper-hemicontinuity 

with respect to beliefs. 

Theorem 6. Suppose that N, S, Θ are finite. Let P ⊂ Δ(Θ) be such that for every p ∈ P 

pi(θi) > 0, ∀θi ∈ Θi, i ∈ N . Then BNE(Bp) is upper-hemicontinuous in p over P . 

Proof. Since BNE(Bp) = NE(G(Bp)), it is sufficient to note that 

Ui((si(θi))θi∈Θi,i∈N) = Ep(ui(θ, s1(θ1), . . . , sn(θn))) 

(as defined for G(Bp)) is continuous in p.	 � 

4Sums of quasi-concave functions are not necessarily quasi-concave. 
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7. Extensive Form Games 

An extensive form game consists of 

•	 a finite set of players N = {1, 2, . . . , n}; nature is denoted as “player 0” 

•	 the order of moves specified by a tree 

•	 each player’s payoffs at the terminal nodes in the tree 

•	 information partition 

•	 the set of actions available at every information set and a description of how actions 

lead to progress in the tree 

•	 moves by nature. 

A tree is a directed graph (X,>)—there is a link from node x to node y if x > y, which 

we interpret as “x precedes y.” We assume that X is finite, there is an initial node φ ∈ X, 

> is transitive (x > y, y > z x > z) and asymmetric (x > y y > x). Hence the tree ⇒	 ⇒ �
has no cycles. We also require that each node x = φ has exactly one immediate predecessor, 

i.e., ∃x� > x such that x�� > x, x�� �= x� implies x�� > x�. A node is terminal if it does not 

precede any other node; this means that the set of terminal nodes is Z = {z| � ∃x, z > x}. 
Each z ∈ Z completely determines a path of moves though the tree (recall the finiteness 

assumption), with associated payoff ui(z) for player i. 

An information partition is a partition of X \ Z. Node x belongs to the information 

set h(x). The same player, denoted i(h) ∈ N ∪ {0}, moves at each node x ∈ h (otherwise 

players might disagree on whose turn to move is). The interpretation is that i(h) is uncertain 

whether he is at x or some other x� ∈ h(x). We abuse notation writing i(x) = i(h(x)). 

The set of available actions at x ∈ X \ Z for player i(x) is A(x). We assume that 

A(x) = A(x�) =: A(h), ∀x� ∈ h(x) (otherwise i(h) might play an infeasible action). A 

function l labels each node x = φ with the last action taken to reach it. We require that 

the restriction of l to the immediate successors of x be bijective on A(x). Finally, a move by 

nature at some node x corresponds to a probability distribution over A(x). 

Let Hi = {h i(h) = i}. The set of pure strategies for player i is Si = 
�

h∈Hi 
A(h). As 

usual, S = 
�

i

|
∈N Si. A strategy is a complete contingent plan specifying an action to be 

taken at each information set (if reached). We can define mixed strategies as probability 

distributions over pure strategies, σi ∈ Δ(Si). Any mixed strategy profile σ ∈ 
�

i∈N Δ(Si), 
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along with the distribution of the moves by nature and the labeling of nodes with actions, 

leads to a probability distribution O(σ) ∈ Δ(Z). We denote by ui(σ) = EO(σ)(ui(z)). The 

associated normal form game is (N, S, u). 

Two strategies si, si
� ∈ Si are equivalent if O(si, s−i) = O(si

� , s−i),∀s−i, that is, they lead 

to the same distribution over outcomes regardless of how the opponents play. See figure 3.9 

in FT p. 86. Si
R is a subset of Si that contains exactly one strategy from each equivalence 

class. The reduced normal form game is given by (N,SR, u). 

A behavior strategy specifies a distribution over actions for each information set. For­

mally, a behavior strategy bi(h) for player i(h) at information set h is an element of Δ(A(h)). 

We use the notation bi(a h) for the probability of action a at information set h. A behavior |
strategy bi for i is an element of 

�
h∈Hi 

Δ(A(h)). A profile b of behavior strategies determines 

a distribution over Z in the obvious way. Clearly, bi is equivalent to σi with 

σi(si) = 
� 

bi(si(h)|h), 
h∈Hi 

where si(h) denotes the projection of si on A(h). 

To guarantee that every mixed strategy is equivalent to a behavior strategy we need to 

impose the additional requirement of perfect recall. Basically, prefect recall means that 

no player ever forgets any information he once had and all players know the actions they 

have chosen previously. See figure 3.5 in FT, p. 81. Formally, perfect recall stipulates that 

if x�� ∈ h(x�), x is a predecessor of x� and the same player i moves at both x and x� (and thus 

at x��) then there is a node x̂ in the same information set as x (possibly x itself) such that 

x̂ is a predecessor of x�� and the action taken at x along the path to x� is the same as the 

action taken at x̂ along the path to x��. Intuitively, the nodes x� and x�� are distinguished by 

information i does not have, so he cannot have had it at h(x); x� and x�� must be consistent 

with the same action at h(x) since i must remember his action there. 

Let Ri(h) be the set of pure strategies for player i that do not preclude reaching the 

information set h ∈ Hi, i.e., Ri(h) = {si|h is on the path of some (si, s−i)}. If the game has 

prefect recall, a mixed strategy σi is equivalent to a behavior strategy bi defined by 
�

{si∈Ri(h) si(h)=a}
bi(a|h) = �

si∈R

|

i(h) σi(si

σ

) 

i(si) 
, 

when the denominator is positive and any distribution when it is zero. 
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Many different mixed strategies can generate the same behavior strategy. Consider the 

example from FT p. 88, figure 3.12. Player 2 has four pure strategies, s2 = (A,C), s2
� = 

(A,D), s��2 = (B,C), s���2 = (B, D). Now consider two mixed strategies, σ2 = (1/4, 1/4, 1/4, 1/4), 

which assigns probability 1/4 to each pure strategy, and σ2 = (1/2, 0, 0, 1/2), which assigns 

probability 1/2 to each of s2 and s���2 . Both of these mixed strategies generate the behavior 

strategy b2 with b2(A h) = b2(B h) = 1/2 and b2(C h�) = b2(D h�) = 1/2. Moreover, for any | | | |
strategy σ1 of player 1, all of σ2, σ2

� , b2 lead to the same probability distribution over terminal 

nodes. For example, the probability of reaching node z1 equals the probability of player 1 

playing U times 1/2. 

The relationship between mixed and behavior strategies is different in the game illustrated 

in FT p. 89, figure 3.13, which is not a game of perfect recall (player 1 forgets what he 

did at the initial node; formally, there are two nodes in his second information set which 

obviously succeed the initial node, but are not reached by the same action at the initial 

node). Player 1 has four strategies in the strategic form, s1 = (A,C), s�1 = (A,D), s��1 = 

(B, C), s���1 = (B, D). Now consider the mixed strategy σ1 = (1/2, 0, 0, 1/2). As in the last 

example, this generates the behavior strategy b1 = {(1/2, 1/2), (1/2, 1/2)}, where player 1 

mixes 50 − 50 at each information set. But b1 is not equivalent to the σ1 that generated it. 

Indeed (σ1, L) generates a probability 1/2 for the terminal node corresponding to (A,L, C) 

and a 1/2 probability for (B, L,D). However, since behavior strategies describe independent 

randomizations at each information set, (b1, L) assigns probability 1/4 to each of the four 

paths (A, L,C), (A,L, D), (B,L, C), (B,L, D). Since both A vs. B and C vs. D are choices 

made by player 1, the strategy σ1 under which player 1 makes all his decisions at once allows 

choices at different information sets to be correlated. Behavior strategies cannot produce 

this correlation in the example, because when it comes time to choose between C and D, 

player 1 has forgotten whether he chose A or B. 

Theorem 7 (Kuhn 1953). Under perfect recall, mixed and behavioral strategies are equiva­

lent. 

Hereafter we restrict attention to games with perfect recall, and use mixed and behavior 

strategies interchangeably. Behavior strategies prove more convenient in many arguments 
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and constructions. We drop the notation b for behavior strategies and instead use σi(ai h)|
to denote player i’s probability of playing action ai at information set h. . . 

8. Backward Induction and Subgame Perfection 

An extensive form game has perfect information if all information sets are singletons. 

Backward induction can be applied to any extensive form game of perfect information with 

finite X (which means that the number of “stages” and the number of actions feasible at 

any stage are finite). The idea of backward induction is formalized by Zermelo’s algorithm. 

Since the game is finite, it has a set of penultimate nodes, i.e., nodes whose (all) immediate 

successors are terminal nodes. Specify that the player who moves at each such node chooses 

the strategy leading to the terminal node with the highest payoff for him. In case of a tie, 

make an arbitrary selection. Next each player at nodes whose immediate successors are 

penultimate (or terminal) nodes chooses the action maximizing his payoff over the feasible 

successors, given that players at the penultimate nodes play as assumed. We can now roll 

back through the tree, specifying actions at each node. At the end of the process we have a 

pure strategy for each player. It is easy to check that the resulting strategies form a Nash 

equilibrium. 

Theorem 8 (Zermelo 1913; Kuhn 1953). A finite game of perfect information has a pure-

strategy Nash equilibrium. 

Moreover, the backward induction solution has the nice property that each player’s actions 

are optimal at every possible history if the play of the opponents is held fixed, which we 

call subgame perfection. More generally, subgame perfection extends the logic of backward 

induction to games with imperfect information. The idea is to replace the “smallest” proper 

subgame with one of its Nash equilibria and iterate this procedure on the reduced tree. In 

stages where the “smallest” subgame has multiple Nash equilibria, the procedure implicitly 

assumes that all players believe the same equilibrium will be played. To define subgame 

perfection formally we first need the definition of a proper subgame. Informally, a proper 

subgame is a portion of a game that can be analyzed as a game in its own right. 

Definition 6. A proper subgame G of an extensive form game T consists of a single 

node x and all its successors in T , with the property that if x� ∈ G and x�� ∈ h(x�) then 



16 MIHAI MANEA 

x�� ∈ G. The information sets and payoffs of the subgame are inherited from the original 

game. That is, two nodes are in the same information set in G if and only if they are in the 

same information set in T , and the payoff function on the subgame is just the restriction of 

the original payoff function to the terminal nodes of G. 

The requirements that all the successors of x be in the subgame and that the subgame 

does not “chop up” any information set ensure that the subgame corresponds to a situation 

that could arise in the original game. In figure 3.16, p. 95 of FT, the game on the right is 

not a subgame of the game on the left, because on the right player 2 knows that player 1 

has not played L, which he did not know in the original game. 

Together, the requirements that the subgame begin with a single node x and respect 

information sets imply that in the original game x must be a singleton information set, i.e. 

h(x) = {x}. This ensures that the payoffs in the subgame, conditional on the subgame being 

reached, are well defined. In figure 3.17, p. 95 of FT, the “game” on the right has the 

problem that player 2’s optimal choice depends on the relative probabilities of nodes x and 

x�, but the specification of the game does not provide these probabilities. In other words, 

the diagram on the right cannot be analyzed as a separate game; it makes sense only as a 

component of the game on the left, which provides the missing probabilities. 

Since payoffs conditional on reaching a proper subgame are well-defined, we can test 

whether strategies yield a Nash equilibrium when restricted to the subgame. 

Definition 7. A behavior strategy profile σ of an extensive form game is a subgame perfect 

equilibrium if the restriction of σ to G is a Nash equilibrium of G for every proper subgame 

G. 

Because any game is a proper subgame of itself, a subgame perfect equilibrium profile is 

necessarily a Nash equilibrium. If the only proper subgame is the whole game, the sets of 

Nash and subgame perfect equilibria coincide. If there are other proper subgames, some 

Nash equilibria may fail to be subgame perfect. 

It is easy to see that subgame perfection coincides with backward induction in finite games 

of perfect information. Consider the penultimate nodes of the tree, where the last choices are 

made. Each of these nodes begins a trivial one-player proper subgame, and Nash equilibrium 

in these subgames requires that the player make a choice that maximizes his payoff. Thus 
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any subgame perfect equilibrium must coincide with a backward induction solution at every 

penultimate node, and we can continue up the tree by induction. 

9. Important Examples of Extensive Form Games 

9.1. Repeated games with observable actions. 

•	 time t = 0, 1, 2, . . . (usually infinite) 

•	 stage game is a normal-form game G 

•	 G is played every period t 

•	 players observe the realized actions at the end of each period 

•	 payoffs are the sum of discounted payoffs in the stage game. 

Repeated games are a widely studied class of dynamic games. There is a lot of research 

dealing with various restrictions on the information about past play. 

9.2. Multi-stage games with observable actions. 

•	 stages k = 0, 1, 2, . . . 

at stage k, after having observed a “non-terminal” history of play h = (a0 , . . . , ak−1),• 

each player i simultaneously chooses an action ai
k ∈ Ai(h) 

• payoffs given by u(h) for each terminal history h. 

Often it is natural to identify the “stages” of the game with time periods, but this is not 

always the case. A game of perfect information can be viewed as a multi-stage game in 

which every stage corresponds to some node. At every stage all but one player (the one 

moving at the node corresponding to that stage) have singleton action sets (“do nothing”; 

can refer to these players as “inactive”). Repeated versions of perfect information extensive 

form games also lead to multi-stage games, e.g., the Rubinstein (1982) alternating bargaining 

game, which we discuss later. 

10. Single (or One-Shot) Deviation Principle 

Consider a multi-stage game with observed actions. We show that in order to verify that 

a strategy profile σ is subgame perfect, it suffices to check whether there are any histories 

ht where some player i can gain by deviating from the actions prescribed by σi at ht and 

conforming to σi elsewhere. 
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If σ is a strategy profile and ht a strategy, write ui(σ ht) for the (expected) payoff to player |
i that results if play starts at ht and continues according to σ in each stage. 

Definition 8. A strategy σi is unimprovable given σ−i if ui(σi, σ−i| ht) ≥ ui(σi
�, σ−i| ht) 

for every t ≥ 0, ht ∈ Hi and σi
� ∈ Δ(Si) with σi

�(h�t� ) = σi(h
�
t� ) for all h�t� ∈ Hi \ {ht}. 

Hence a strategy σi is unimprovable if after every history, no strategy that differs from it at 

only one information set can increase utility. Obviously, if σ is a subgame perfect equilibrium 

then σi is unimprovable given σ−i. To establish the converse, we need an additional condition. 

Definition 9. A game is continuous at infinity if for each player i the utility function 

ui satisfies 

lim sup ui(h)− ui(h̃) = 0. 
t→∞ {(h,h̃) ht =ht} 

| |
| ˜

Continuity at infinity requires that events in the distant future are relatively unimportant. 

It is satisfied if the overall payoffs are a discounted sum of per-period payoffs and the stage 

payoffs are uniformly bounded. 

Theorem 9. Consider a (finite or infinite horizon) multi-stage game with observed actions5 

that is continuous at infinity. If σi is unimprovable given σ−i then σi is a best response to 

σ−i conditional on any history ht. 

Proof. Suppose that σi is unimprovable given σ−i, but σi is not a best response to σ−i 

following some history ht. Let σi 
1 be a strictly better response and define 

(10.1) ε = ui(σi 
1, σ−i|ht)− ui(σi, σ−i|ht) > 0. 

Since the game is continuous at infinity, there exists t� > t and σi 
2 such that σi 

2 is identical 

to σi 
1 at all information sets up to (and including) stage t�, σi 

2 coincides with σi across all 

longer histories and 

(10.2) |ui(σi 
2, σ−i|ht)− ui(σi 

1, σ−i|ht)| < ε/2. 

In particular, 10.1 and 10.2 imply that 

ui(σi 
2, σ−i|ht) > ui(σi, σ−i|ht). 

5We allow for the possibility that the action set be infinite at some stages. 
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Denote by σi 
3 the strategy obtained from σi 

2 by replacing the stage t� actions following 

any history ht� with the corresponding actions under σi. Conditional on any history ht� , the 

strategies σi and σi 
3 coincide, hence 

(10.3)	 ui(σi 
3, σ−i|ht� ) = ui(σi, σ−i|ht� ). 

As σi is unimprovable given σ−i, and σi and σi 
2 only differ at stage t� conditional on ht� , we 

need 

(10.4)	 ui(σi, σ i , σ−i|ht� ) ≥ ui(σ
2 −i|ht� ). 

Then 10.3 and 10.4 lead to 

ui(σi 
3, σ−i|ht� ) ≥ ui(σi 

2, σ−i|ht� ) 

for all histories ht� (consistent with ht). Since σi 
2 and σi 

3 coincide before reaching stage t�, 

we obtain 

ui(σi 
3, σ−i|ht) ≥ ui(σi 

2, σ−i|ht). 

Similarly, we can construct σi 
4 , . . . , σi

t�−t+3 . The strategy σi
t�−t+3 is identical to σi condi­

tional on ht and 

ui(σi, σ−i|ht) = ui(σi
t�−t+3, σ−i|ht) ≥ . . . ≥ ui(σi 

3, σ−i|ht) ≥ ui(σi 
2, σ−i|ht) > ui(σi, σ−i|ht), 

a contradiction.	 � 

11. Iterated Conditional Dominance 

Definition 10. In a multi-stage game with observable actions, an action ai is conditionally 

dominated at stage t given history ht if in the subgame starting at ht every strategy for player 

i that assigns positive probability to ai is strictly dominated. 

Proposition 2. In any perfect information game, every subgame perfect equilibrium survives 

iterated elimination of conditionally dominated strategies. 
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12. Bargaining with Alternating Offers 

The set of players is N = {1, 2}. For i = 1, 2 we write j = 3− i. The set of feasible utility 

pairs is U ⊂ R2, assumed to be compact and convex with (0, 0) ∈ U . 6 Time is discrete and 

infinite, t = 0, 1, . . . Each player i discounts payoffs by δi, so receiving ui at time t is worth 

δi
tui. 

Rubinstein (1982) analyzes the following perfect information game. At every time t = 

0, 1, . . ., player i(t) proposes an alternative u = (u1, u2) ∈ U to player j = 3 − i(t); the 

bargaining protocol specifies that i(t) = 1 for t even and i(t) = 2 for t odd. If j accepts the 

offer, then the game ends yielding a payoff vector (δ1
tu1, δ2

tu2). Otherwise, the game proceeds 

to period t + 1. If agreement is never reached, each player receives a 0 payoff. 

For each player i, it is useful to define the function gi by setting 

gi (uj) = max {ui| (u1, u2) ∈ U} . 

Notice that the graphs of g1 and g2 coincide with the Pareto-frontier of U . 

12.1. Stationary subgame perfect equilibrium. Let (m1,m2) be the unique solution to 

the following system of equations 

m1 = δ1g1 (m2) 

m2 = δ2g2 (m1) . 

Note that (m1,m2) is the intersection of the graphs of the functions δ2g2 and (δ1g1)
−1 . 

We are going to argue that the following “stationary” strategies constitute the unique 

subgame perfect equilibrium. In any period where player i has to make an offer to j, he 

offers u with uj = mj and j accepts only offers u with uj ≥ mj. We can use the single-

deviation principle to check that this is a subgame perfect equilibrium. 

12.2. Equilibrium uniqueness. We prove that the subgame perfect equilibrium is unique 

by arguing that it is essentially the only strategy profile that survives iterated conditional 

dominance. 

6The set of feasible utility outcomes U can be generated from a set of contracts or decisions X in a natural 

way. Define U = {(v1 (x) , v2 (x)) |x ∈ X} for a pair of utility functions v1 and v2 over X. With additional 

assumptions on X, v1, v2 we can ensure that the resulting U is compact and convex. 
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Theorem 10. If a strategy profile survives iterative elimination of conditionally dominated 

strategies, then it is identical to the stationary subgame perfect equilibrium except for the 

nodes at which a player is indifferent between accepting and rejecting an offer in the subgame 

perfect equilibrium. 

Proof. Since player i can get 0 by never reaching an agreement, offering an alternative that 

gives him less than 

m 0 
i = 0 

or accepting such an offer at any history is conditionally dominated. All such offers are 

eliminated at the first stage of the iteration. Then i should never expect to receive more 

than 

Mi 
0 = δigi (0) 

in any future period following a disagreement. Hence rejecting an offer u with ui > Mi 
0 

is conditionally dominated by accepting such an offer for i. Once we eliminate the latter 

strategies, i always accepts offers u with ui > Mi 
0 from j. Then making offers u with ui > Mi 

0 

is dominated for j by offers ū = λu +(1 − λ) (Mi 
0, gj (Mi 

0)) for λ ∈ (0, 1). We remove all the 

strategies involving such offers. 

Under the surviving strategies, j can reject an offer from i and make an offer next period 

that leaves him with slightly less than gj (Mi 
0), which i accepts. Hence accepting any offer 

that gives him less than 

1 mj = δjgj 

�
Mi 

0
� 

is dominated for j. Moreover, making such offers is dominated for j because we argued above 

that offers with ui > Mi 
0 are dominated. After we eliminate such moves, i cannot expect 

more than 

Mi 
1 = δigi 

�
m 1 

j

� 
= δigi 

�
δjgj

�
Mi 

0
�� 

in any future period following a disagreement. 

We can recursively define the sequences 

k+1 mj = δjgj

�
Mi

k
� 

Mk+1 = δigi 

�
m k+1

�
i j 
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for i = 1, 2 and k ≥ 1. Since both g1 and g2 are decreasing functions, we can easily show 

that the sequence (mi
k) is increasing and (Mi

k) is decreasing. By arguments similar to those 

above, we can prove by induction on k that, at some stage in the iteration, player i = 1, 2 

• never accepts or makes an offer with ui < mi
k 

always accepts offers with ui > Mi
k, but making such offers is dominated for j. • 

The sequences (mk
i ) and (Mi

k) are monotonic and bounded, so they need to converge. The 

limits satisfy 

mj
∞ = δjgj

�
δigi 

�
mj
∞�� 

= 
�
m∞� 

.Mi
∞ δigi j 

It follows that (m∞
1 ,m

∞
2 ) is the (unique) intersection point of the graphs of the functions δ2g2 

and (δ1g1)
−1 . Moreover, Mi

∞ = δigi 

�
m∞

j 

� 
= mi

∞. Therefore, no strategy for i that rejects 

u with ui > Mi
∞ = m∞

i or accepts u with ui < m∞
i = Mi

∞ survives iterated elimination of 

conditionally dominated strategies. Also, no strategy for i to offer u with ui = Mi
∞ = i� m∞

survives. � 

12.3. Properties of the subgame perfect equilibrium. The subgame perfect equilib­

rium is efficient—agreement is obtained in the first period, without delay. The subgame 

perfect equilibrium payoffs are given by by (g1(m2),m2), where (m1,m2) solve 

m1 = δg1 (m2) 

m2 = δg2 (m1) . 

It can be easily shown that the payoff of player i is increasing in δi and decreasing in δj. For 

a fixed δj ∈ (0, 1), the limit payoff of player i converges to 0 as δi 0 and to maxu∈U ui→ 

as δi 1. If U is symmetric and δ1 = δ2, player 1 enjoys a first mover advantage because → 

m1 = m2 and g1(m2) > m2. 

13. Nash Bargaining 

Assume that U is such that g2 is decreasing, strictly concave and continuously differentiable 

(derivative exists and is continuous). The Nash (1950) bargaining solution u∗ is defined 

by {u∗} = arg maxu∈U u1u2 = arg maxu∈U u1g2(u1). It is the outcome (u∗1, g2(u1
∗)) uniquely 
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pinned down by the first order condition g2(u
∗
1)+u∗1g2

� (u∗1) = 0. Indeed, since g2 is decreasing 

and strictly concave, the function f , given by f(x) = g2(x) + xg2
� (x), is strictly decreasing 

and continuous and changes sign on the relevant range. 

Theorem 11 (Binmore, Rubinstein and Wolinsky 1985). Suppose that δ1 = δ2 =: δ in the 

alternating bargaining model. Then the unique subgame perfect equilibrium payoffs converge 

to the Nash bargaining solution as δ 1. → 

Proof. Recall that the subgame perfect equilibrium payoffs are given by (g1(m2),m2) where 

(m1,m2) satisfies 

m1 = δg1 (m2) 

m2 = δg2 (m1) . 

It follows that g1(m2) = m1/δ, hence m2 = g2(g1(m2)) = g2(m1/δ). We rewrite the equations 

as follows 

g2(m1/δ) = m2 

g2 (m1) = m2/δ. 

By the mean value theorem, there exists ξ ∈ (m1,m1/δ) such that g2(m1/δ) − g2(m1) = 

(m1/δ−m1)g2
� (ξ), hence (m2−m2/δ) = (m1/δ−m1)g2

� (ξ) or, equivalently, m2+m1g2
� (ξ) = 0. 

Substituting m2 = δg2 (m1) we obtain δg2 (m1) + m1g2
� (ξ) = 0. 

Note that (g1(m2),m2) converges to u∗ as δ 1 if and only if (m1,m2) does. In order → 

to show that (m1,m2) converges to u∗ as δ 1, it is sufficient to show that any limit point → 

of (m1,m2) as δ 1 is u∗. Let (m∗
1,m2

∗) be such a limit point corresponding to a sequence → 

(δk)k≥0 → 1. Recognizing that m1,m2, ξ are functions of δ, we have 

(13.1) δkg2 (m1(δk)) + m1(δk)g2
� (ξ(δk)) = 0. 

Since ξ(δk) ∈ (m1(δk),m1(δk)/δk) with m1(δk),m1(δk)/δk → m1
∗ as k → ∞ and g� is con­2 

tinuous by assumption, in the limit 13.1 becomes g2 (m1
∗) + m1

∗g2
� (m∗

1) = 0. Therefore, 

m∗
1 = u∗1. � 
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14. Sequential Equilibrium 

In multi-stage games with incomplete information, say where payoffs depend on initial 

moves by nature, the only proper subgame is the original game, even if players observe one 

another’s actions at the end of each period. Thus the refinement of Nash equilibrium to 

subgame perfect equilibrium has no bite. Since players do not know the others’ types, the 

start of a period can only be analyzed as a separate subgame when the players’ posterior 

beliefs are specified. The concept of sequential equilibrium proposes a way to derive plausible 

beliefs at every information set. Based on the beliefs, one can test whether the continuation 

strategies form a Nash equilibrium. 

The complications that incomplete information causes are easiest to see in “signaling 

games”—leader-follower games in which only the leader has private information. The leader 

moves first; the follower observes the leader’s action, but not the leader’s type, before choos­

ing his own action. One example is Spence’s (1974) model of the job market. In that model, 

the leader is a worker who knows her productivity and must choose a level of education; 

the follower, a firm (or number of firms), observes the worker’s education level, but not her 

productivity, and then decides what wage to offer her. In the spirit of subgame perfection, 

the optimal wage should depend on the firm’s beliefs about the worker’s productivity given 

the observed education. An equilibrium needs to specify not only contingent actions, but 

also beliefs. At information sets that are reached with positive probability in equilibrium, 

beliefs should be derived using Bayes’ rule. However, there are some theoretical issues about 

belief update following zero-probability events. 

Refer for more motivation to the example in FT, figure 8.1 (p. 322). The strategy profile 

(L,A) is a Nash equilibrium, which is subgame perfect as player 2’s information set does 

not initiate a proper subgame. However, it is not a very plausible equilibrium, since player 

2 prefers playing B rather than A at his information set, regardless of whether player 1 has 

chosen M or R. So, a good equilibrium concept should rule out the solution (L,A) in this 

example and ensure that 2 always plays B. The problem with the considered equilibrium is 

that player 2 does not play a best response to any possible belief at his information set. 

For most definitions, we focus on extensive form games of prefect recall with finite sets of 

decision nodes. We use some of the notation introduced earlier. 
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A sequential equilibrium (Kreps and Wilson 1982) is an assessment (σ, µ), where σ is 

a (behavior) strategy profile and µ is a system of beliefs. The latter component consists 

of a belief specification µ(h) over the nodes at each information set h. The definition of 

sequential equilibrium is based on the concepts of sequential rationality and consistency. 

Sequential rationality requires that conditional on every information set h, the strategy 

σi(h) be a best response to σ−i(h) given the beliefs µ(h). Formally, 

ui(h)(σi(h), σ−i(h)|h, µ(h)) ≥ ui(h)(σi
�
(h), σ−i(h)|h, µ(h)) 

for all information sets h and alternative strategies σ�. Here the conditional payoff ui(σ h, µ(h))|
now denotes the payoff that results when play begins at a randomly selected node in the 

information set h, where the probability distribution on these nodes is given by µ(h), and 

subsequent play at each information set is as specified by the profile σ. 

Beliefs need to be consistent with strategies in the following sense. For any fully mixed 

strategy profile σ̃—that is, one where each action is played with positive probability at every 

information set—all information sets are reached with positive probability and Bayes’ rule 

leads to a unique system of beliefs µσ̃. The assessment (σ, µ) is consistent if there exist a 

sequence of fully mixed strategy profiles (σm)m≥0 converging to σ such that the associated 

beliefs µσm 
converge to µ as m →∞. 

Definition 11. A sequential equilibrium is an assessment which is sequentially rational and 

consistent. 

The definition of sequential equilibrium rules out the strange equilibrium in the earlier 

example (FT figure 8.1). Since player 1 chooses L under the proposed equilibrium strategies, 

consistency does not pin down player 2’s beliefs at his information set. However, sequential 

rationality requires that player 2 have some beliefs and best-respond to them, which ensures 

that A is not played. 

Consistency imposes more restrictions than Bayes’ rule alone. Consider figure 8.3 in FL 

(p. 339). The information set h1 of player 1 consists of two nodes x, x�. Player 1 can take an 

action D leading to y, y� respectively. Player 2 cannot distinguish between y and y� at the 

information set h2. If 1 never plays D in equilibrium, then Bayes’ rule does not pin down 

beliefs at h2. However, consistency implies that µ2(y h2) = µ1(x h1). The idea is that since | |
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1 cannot distinguish between x and x�, he is equally likely to tremble at either node. Hence 

trembles ensure that players’ beliefs respect the information structure. 

More generally, consistency imposes common beliefs following deviations from equilibrium 

behavior. There are criticisms of this requirement—why should different players have the 

same theory about something that was not supposed to happen? A contra-argument is that 

consistency matches the spirit of equilibrium analysis, which normally assumes that players 

agree in their beliefs about other players’ strategies (namely, players share correct conjectures 

about each other’s strategies). 

15. Properties of Sequential Equilibrium 

Theorem 12. A sequential equilibrium exists for every finite extensive-form game. 

This is a consequence of the existence of perfect equilibria, which we prove later. 

Proposition 3. The sequential equilibrium correspondence is upper hemi-continuous with 

respect to payoffs. 

Proof. Let uk u be a convergent sequence of payoff functions and (σk, µk) (σ, µ) be a → → 

convergent sequence of sequential equilibria of the games with corresponding payoffs uk . We 

need to show that (σ, µ) is a sequential equilibrium for the game with payoffs given by u. 

Sequential rationality of (σ, µ) is straightforward because the expected payoffs conditional 

on reaching any information set are continuous in the payoff functions and beliefs. 

We also have to check consistency of (σ, µ). As (σk, µk) is a sequential equilibrium of 

the game with payoff function uk, there exists a sequence of completely mixed strategies 

(σm,k)m σk, with corresponding induced beliefs given by (µm,k)m µk . For every k,→ → 

we can find a sufficiently large mk so that each component of σk,mk and µmk are within 

1/k from the corresponding one under σk and µk . Since σk σ, µk µ, it must be that → → 

σmk,k σ, µmk,k µ. Thus we have obtained a sequence of fully mixed strategies converging → → 

to σ, which induces beliefs converging to µ. � 

Kreps and Wilson show that in generic games (i.e., a space of payoff functions such that 

the closure of its complement has measure zero), the set of sequential equilibrium outcome 

distributions is finite. Nevertheless, it is not generally true that the set of sequential equilibria 
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is finite, as there may be infinitely many belief specifications for off-path information sets 

that support some equilibrium strategies. We provide an illustration in the context of the 

beer-or-quiche signaling game of Cho and Kreps (1987). 

See figure 11.6 in FT (p. 450). Player 1 is wimpy or surly, with respective probabilities 0.1 

or 0.9. Player 2 is a bully who would like to fight the wimpy type but not the surly one. Player 

1 orders breakfast and 2 decides whether to fight him after observing his breakfast choice. 

Player 1 gets a utility of 1 from having his favorite breakfast—beer if surly, quiche if weak— 

but a disutility of 2 from fighting. When player 1 is weak, player 2’s utility is 1 if he fights 

and 0 otherwise; when 1 is surly, the payoffs to the two actions are reversed. One can show 

that there are two classes of sequential equilibria, corresponding to two distinct outcomes. 

In one set of sequential equilibria, both types of player 1 drink beer, while in the other both 

types of player 1 eat quiche. In both cases, player 2 must fight with probability at least 1/2 

when observing the out-of-equilbrium breakfast in order to make the mismatched type of 

player 1 endure gastronomic horror. Note that either type of equilibrium can be supported 

with any belief for player 2 placing a probability weight of at least 1/2 on player 1 being 

wimpy following the out-of-equilbrium breakfast. Hence there is an infinity of sequential 

equilibrium assessments. 

Kohlberg and Mertens (1986) criticized sequential equilibrium for allowing “strategically 

neutral” changes in the game tree to affect the equilibrium. Compare, for instance, the 

two games in FT figure 8.6 (p. 343). The game on the right is identical to the one on 

the left, except that player 1’s first move is split into two moves in a seemingly irrelevant 

way. Whereas (A,L2) can be supported as a sequential equilibrium for the game on the 

left, the strategy A is not part of a sequential equilibrium for the one on the right. For the 

latter game, in the simultaneous-move subgame following NA, the only Nash equilibrium 

is (R1, R2), as L1 is strictly dominated by R1 for player 1. Hence the unique sequential 

equilibrium strategies for the right-hand game are (NA,R1, R2). 

Note that the sensitivity of sequential equilibrium to the addition of “irrelevant moves” is 

not a direct consequence of consistency, but is rather implied by sequential rationality. In 

the example above, the problem arises even for subgame perfect equilibria. Kohlberg and 

Mertens (1986) further develop these ideas in their concept of a stable equilibrium. However, 

their proposition that mistakes be “conditionally optimal” is not necessarily compelling. If 
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we take seriously the idea that players make mistakes at each information set, then it is not 

clear that the two extensive forms above are equivalent. In the game on the right, if player 

1 makes the mistake of not playing A, he is still able to ensure that R1 is more likely than 

L1; in the game on the left, he might take either action by mistake when intending to play 

A. 

16. Perfect Bayesian Equilibrium 

Perfect Bayesian equilibrium was the original solution concept for extensive-form games 

with incomplete information, when subgame-perfection does not have enough force. It in­

corporated the ideas of sequential rationality and Bayesian updating of beliefs. Nowadays 

sequential equilibrium (which was invented later) is the preferred way of expressing these 

ideas, but it’s worthwhile to know about PBE since older papers refer to it. 

The idea is similar to sequential equilibrium but with more basic requirements about how 

beliefs are updated. Fudenberg & Tirole (1991) have a paper that describes various formula­

tions of PBE. The basic requirements are that strategies should be sequentially rational and 

that beliefs should be derived from Bayes’s rule wherever applicable, with no constraints on 

beliefs at information sets reached with probability zero in equilibrium. 

Other properties that can be imposed: 

•	 In a multi-stage game with independent types — i.e. exactly one move by Nature, 

at the beginning of the game, assigning types to players and such that types are 

independently distributed, with all subsequent actions of observed — beliefs about 

different players should remain independent at each history. (PBE is usually applied 

to games in which Nature moves only at the beginning and actions are observed.) 

•	 Updating should be “consistent”: given a probability-zero history ht at time t, from 

which strategies do call for a positive-probability transition to history ht+1, the belief 

at ht+1 should be given by updating beliefs at ht via Bayes’s rule. 

•	 “Not signaling what you don’t know”: beliefs about player i at the beginning of 

period t + 1 depend only on ht and action by player i at time t, not also on other 

players’ actions at time t. 

•	 Two different players i, j should have the same belief about a third player k even at 

probability-zero histories. 
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All of these conditions are implied by consistency. 

Anyhow, there does not seem to be a single clear definition of PBE in the literature. 

Different sets of conditions are imposed by different authors. For this reason, using sequential 

equilibrium is preferable. 

17. Perfect Equilibrium 

Now consider the following game: 

L R 

U 1, 1 0, 0 

D 0, 0 0, 0 

Both (U,L) and (D,R) are sequential equilibria (sequential equilibrium coincides with 

Nash equilibrium in a normal-form game). But (D, R) seems non-robust: if player 1 thinks 

that player 2 might make a mistake and play L with some small probability, he would rather 

deviate to U . This motivates the definition of (trembling-hand) perfect equilibrium 

(Selten, 1975) for normal-form games. A profile σ is a PE if there is a sequence of “trembles” 

σm σ, where each σm is a completely mixed strategy, such that σi is a best reply to σm → −i 

for each m. 

An equivalent approach is to define a strategy profile σε to be an ε-perfect equilibrium 

if there exist ε(si) ∈ (0, ε) for all i, all si, such that σε is a Nash equilibrium of the game 

where players are restricted to play mixed strategies where every strategy si has probability 

at least ε(si). A PE is a profile that is a limit of some sequence of ε-perfect equilibria σε as 

ε 0. (We will not show the equivalence here but it’s not too hard.) → 

Theorem 13. Every finite normal-form game has a perfect equilibrium. 

Proof. For any ε > 0, we can certainly find a Nash equilibrium of the modified game, where 

each player is restricted to play mixed strategies that place probability at least ε on every 

pure action. (Just apply the usual Nash existence theorem for compact strategy sets and 

quasiconcave payoffs.) By compactness, there is some subsequence of these strategy profiles 

as ε 0 that converges, and the limit point is a perfect equilibrium by definition. � → 
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We would like to extend this definition to extensive-form games. Consider the game in 

Fig 8.11 (p. 353) of FT. They show an extensive-form game and its reduced normal form. 

There is a unique SPE (L1L
�
1, L2). But (R1, R2) is a PE of the reduced normal form. Thus 

perfection in the normal form does not imply subgame-perfection. The perfect equilibrium is 

sustained only by trembles such that, conditional on trembling to L1 at the first node, player 

1 is also much more likely to play R1
� than L1

� at his second node. This seems unreasonable 

— R1
� is only explainable as a tremble. Perfect equilibrium as defined so far thus has the 

disadvantage of allowing correlation in trembles at different information sets. 

The solution to this is to impose perfection in the agent-normal form. We treat the two 

different nodes of player 1 as being different players, thus requiring them to tremble inde­

pendently. More formally, in the agent-normal form game, we have a player corresponding 

to every information set. Given a strategy profile for all the players, each “player” corre­

sponding to an information set h gets payoff given by the payoff of player i(h) from the 

corresponding strategies in the extensive-form game. Thus, the game in figure 8.11 turns 

into a three-player game. The only perfect equilibrium of this game is (L1, L
�
1, L2). 

More generally, a perfect equilibrium in an extensive-form game is defined to be a 

perfect equilibrium of the corresponding agent-normal form. 

Theorem 14. Every PE of a finite extensive-form game is a sequential equilibrium (for 

some appropriately chosen beliefs). 

Proof. Let σ be the given PE. So there exist fully mixed strategy profiles σm σ which → 

are ε-perfect equilibria of the agent-normal form game with ε 0. For each σm we have a → 

well-defined belief system induced by Bayes’s rule. Pick a subsequence for which these belief 

systems converge, to some µ. Then by definition (σ, µ) is consistent. Sequential rationality 

follows exactly from the fact that σ is a perfect equilibrium of the agent-normal form, using 

the first definition of perfect equilibrium. (More properly, this implies that there are no 

one-shot deviations that benefit any player; by an appropriate adaptation of the one-shot 

deviation principle this shows that σ is in fact fully sequentially rational at every information 

set.) � 
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The converse is not true — not every sequential equilibrium is perfect, as we already saw 

with the simple normal-form example above. But for generic payoffs it is true (Kreps & 

Wilson, 1982). 

The set of perfect equilibrium outcomes is not upper-hemicontinuous (unlike sequential 

equilibrium or subgame-perfect equilibrium). Consider the following game: 

L R 

U 1, 1 0, 0 

D 0, 0 1/n, 1/n 

It has (D, R) as a perfect equilibrium for each n > 0, but in the limit where (D,R) has 

payoffs (0, 0) it is no longer a perfect equilibrium. We can think of this as an order-of-limits 

problem: as n → ∞ the trembles against which D and R remain best responses become 

smaller and smaller. 

18. Proper Equilibrium 

Myerson (1978) considered the notion that when a player trembles, he is still more likely 

to play better actions than worse ones. Myerson’s notion is that a player’s probability of 

playing the second-best action is at most ε times the probability of the best action, the 

probability of the third-best action is at most ε times the probability of the second-best 

action, and so forth. Consider the game in Fig. 8.15 of FT (p. 357). (M,M) is a perfect 

equilibrium, but Myerson argues that it can be supported only using unreasonable trembles, 

where each player has to be likely to tremble to a very bad reply rather than an almost-best 

reply. 

Definition 12. A ε-proper equilibrium is a totally mixed strategy profile σε such that, 

if ui(si, σ
ε ) < ui(s

� , σε ), then σi
ε ≤ εσε(s�). A proper equilibrium is any limit of some −i i −i i i

ε-proper equilibria as ε 0. → 

Theorem 15. Every finite normal-form game has a proper equilibrium. 

Proof. First prove existence of ε-proper equilibria, using the usual Kakutani argument ap­

plied to the “almost-best-reply” correspondences BRi
ε rather than the usual best-reply corre­

spondences. (BRi
ε(σ−i) is the set of mixed strategies for player i in a suitable compact space 
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of fully mixed strategies that satisfy the inequality in the definiton of ε-proper equilibrium.) 

Then use compactness to see that there exists a sequence that converges as ε 0; its limit → 

is a proper equilibrium. � 

Given an extensive-form game, a proper equilibrium of the corresponding normal form is 

automatically subgame-perfect; we don’t need to go to the agent-normal form. We can show 

this by a backward-induction-type argument. 

Kohlberg and Mertens (1986) showed that a proper equilibrium in a normal-form game is 

sequential in every extensive-form game having the given normal form. However, it will not 

necessarily be a trembling-hand perfect equilibrium in (the agent-normal form of) every such 

game. See Figure 8.16 of FT (p. 358): (Lr) is proper (and so sequential) but not perfect in 

the agent-normal form. 

19. Forward Induction in Signaling Games 

Consider now a signaling game. There are two players, a sender S and a receiver R. 

There is a set T of types for the sender; the realized type will be denoted by t. p(t) denotes 

the probability of type t. The sender privately observes his type t, then sends a message 

m ∈ M(t). The receiver observes the message and chooses an action a ∈ A(m). Finally 

both players receive payoffs uS(t, m, a), uR(t, m, a); thus the payoffs potentially depend on 

the true type, the message sent, and the action taken by the receiver. 

In such a game we will use T (m) to denote the set {t | m ∈ M(t)}. 
The beer-quiche game from before is an example of such a game. T is the set {weak, surly}; 

the messages are {beer, quiche}; the actions are {fight, not f ight}. As we saw before, there 

are two sequential equilibria: one in which both types of sender choose beer, and another in 

which both types choose quiche. In each case, the equilibrium is supported by some beliefs 

such that the sender is likely to have been weak if he chose the unused message, and the 

receiver responds by fighting in this case. 

Cho and Kreps (1987) argued that the equilibrium in which both types choose quiche 

is unreasonable for the following reason. It does not make any type for the weak type to 

deviate to ordering beer, no matter how he thinks that the receiver will react, because he is 

already getting payoff 3 from quiche, whereas he cannot get more than 2 from switching to 

beer. On the other hand, the surly type can benefit if he thinks that the receiver will react 
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by not fighting. Thus, conditional on seeing beer ordered, the receiver should conclude that 

the sender is surly and so will not want to fight. 

On the other hand, this argument does not rule out the equilibrium in which both types 

drink beer. In this case, in equilibrium the surly type is getting 3, whereas he gets at most 

2 from deviating no matter how the receiver reacts; hence he cannot want to deviate. The 

weak type, on the other hand, is getting 2, and he can get 3 by switching to quiche if he 

thinks this will induce the receiver not to fight him. Thus only the weak type would deviate, 

so the sender’s belief (that the receiver is weak if he orders quiche) is reasonable. 

Now consider modifying the game by adding an extra option for the receiver: paying 

a million dollars to the sender. Now the preceding argument doesn’t rule out the quiche 

equilibrium — either type of sender might deviate to beer if he thinks this will induce the 

receiver to pay him a million dollars. Hence, in order for the argument to go through, we 

need the additional assumption that the sender cannot expect the receiver to play a bad 

strategy. 

Cho and Kreps formalized this line of reasoning in the intuitive criterion, as follows. 

For any set of types T � ⊆ T , write 

BR(T �, m) = ∪µ | µ(T �)=1BR(µ,m) 

— the set of strategies that R could reasonably play if he observes m and is sure that 

the sender’s type is in T �. Now with this notation established, consider any sequential 

equilibrium, and let u∗S(t) be the equilibrium payoff to a sender of type t. Define 

T̃ (m) = | uS
∗ (t) > max uS(t, m, a)}.{t 

a∈BR(T (m),m) 

This is the set of types that do better in equilibrium than they could possibly do by sending 

m, no matter how R reacts, as long as R is playing a best reply to some belief. We then 

say that the proposed equilibrium fails the intuitive criterion if there exist a type t� and a 

message m such that 

u∗S(t�) < min uS(t�,m, a). 
a∈BR(T (m)\T̃ (m),m) 

In words, the equilibrium fails the intuitive criterion if some type t� of the sender is getting 

a lower payoff than any payoff he could possibly get by playing m if he could thereby convince 

the sender that he could not possibly be in T̃ (m). 
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In the beer-quiche example, the all-quiche equilibirum fails this criterion: let t� = surly 

and m = beer; check that T̃ (m) = {weak}. 
Now we can apply this procedure repeatedly, giving the iterated intuitive criterion. 

We can use the intuitive criterion as above to rule out some pairs (t,m) — type t cannot 

conceivably send message m. Now we can rule out some actions of the receiver, by requiring 

that the receiver should be playing a best reply to some belief about the types that have 

not yet been eliminated (given the message). Given this elimination, we can go back and 

possibly rule out more pairs (t,m), and so forth. 

This idea has been further developed by Banks and Sobel (1987). They say that type t� 

is infinitely more likely to choose the out-of-equilibrium message m than type t under 

the following condition: the set of possible best-replies by the receiver (possibly mixed) that 

make t� strictly prefer to deviate to m is a strict superset of the possible best-replies that 

make t weakly prefer to deviate. If this holds, then conditional on observing m, the receiver 

should put belief 0 on type t. The analogue of the Intuitive Criterion under this elimination 

procedure is known as D1. If we allow t� to vary across different best replies by the sender, 

requiring only that every mixed best reply that weakly induced t to deviate would also 

strictly induce some t� to deviate, then this gives criterion D2. We can also apply either 

of these restrictions on beliefs to eliminate possible actions by the receiver, and proceed 

iteratively. Iterating D2 leads to the equilibrium refinement criterion known as universal 

divinity. 

The motivating application is Spence’s job-market signaling model. With just two types 

of job applicant, the intuitive criterion selects the equilibrium where the low type gets the 

lowest level of education and the high type gets just enough education to deter the low type. 

With more types, the intuitive criterion no longer accomplishes this. D1 does manage to 

uniquely select the separating equilibrium that minimizes social waste by having each type 

get just enough education to deter the next-lower type from imitating him. 

20. Forward Induction in General 

The preceding ideas are all attempts to capture some kind of forward induction: players 

should believe in the rationality of their opponents, even after observing a deviation; thus if 

you observe an out-of-equilibrium action being played, you should believe that your opponent 
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expected you to play in a way that made his action reasonable, and this in turn is informative 

about his type (or, in more general extensive forms, about how he plans to play in the 

future). Forward induction is not itself an equilibrium concept, since equilibrium means 

that the specified strategies are to be followed even after a deviation; rather, it is an attempt 

to describe reasoning by players who are not quite certain about what will be played. 

Consider now the extensive-form game as follows: 1 can play O, leading to (2, 2), or I, 

leading to the following battle-of-the-sexes game: 

T W 

T 0, 0 3, 1 

W 1, 3 0, 0 

There is an SPE in which player 1 first plays O; conditional on playing I, they play the 

equilibrium (W,T ). But the following forward-induction argument suggests this equilibrium 

is unreasonable: if player 1 plays I, this suggests he is expecting to coordinate on (T, W ) 

in the battle-of-the-sexes game, so player 2, anticipating this, will play W . Thus if 1 can 

convince 2 to play W by playing I in the first stage, he can get the higher payoff (3, 1). 

This can also be represented in (reduced) normal form. 

T W 

O


IT


IW


2, 2 2, 2 

0, 0 3, 1 

1, 3 0, 0 

This representation of the game shows a connection between forward induction and strict 

dominance. We can rule out IW because it is dominated by O; then the only perfect 

equilibrium of the remaining game is (IT,W ) giving payoffs (3, 1). However, (O, T ) can be 

enforced as a perfect (in fact a proper) equilibrium in the normal-form game. 

Kohlberg and Mertens (1986) argue that an equilibrium concept that is not robust to 

deletion of strictly dominated strategies is troubling. The above example, together with 

other cases of such non-robustness, leads them to define the notion of stable equilibria. It 

is a set-valued concept — not a property of individual equilibrium but of sets of strategies, 
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one for each player. They first argue that a solution concept should meet the following 

requirements: 

•	 Iterated dominance: every strategically stable set must contain a strategically stable 

set of any game obtained by deleting a strictly dominated strategy. 

•	 Admissibility: no mixed strategy in a strategically stable set assigns positive proba­

bility to a strictly dominated strategy. 

•	 Invariance to extensive-form representation: they define an equivalence relation be­

tween extensive forms and require that any stable set in one game should be stable 

in any equivalent game. 

They then define strategic stability in a way such that these criteria are satisfied. Their 

definition is as follows: A closed set S of NE is strategically stable if it is minimal among 

sets with the following property: for every η > 0, there exists ε� > 0 such that, for all ε < ε�, 

all choices of 0 < ε(si) ≤ ε for each player i and strategies si, the game where each player i 

is constrained to play every si with probability at least ε(si) has a Nash equilibrium which 

is within distance η of some equilibrium in S. 

Thus, any sequence of ε-perturbed games as ε 0 should have equilibria corresponding → 

to an equilibrium in S. Notice that we need the minimality property of S to give bite to this 

definition — otherwise, by upper hemi-continuity, we know that the set of all Nash equilibria 

would be strategically stable, and we get no refinement. 

The difference with trembling-hand perfection is that there should be convergence to 

one of the selected equilibria for any sequence of perturbations, not just some sequence of 

perturbations. 

They have a theorem that there exists some stable set that is contained in a connected 

component of the set of Nash equilibria. Generically, each component of the set of Nash 

equilibria leads to a single distribution over outcomes in equilibrium; thus, generically, there 

exists a stable set that determines a unique outcome distribution. Moreover, any stable set 

contains a stable set of the game obtained by elimination of a weakly dominated strategy. 

Moreover, stable sets have an even stronger property, “never a weak best reply”: given a 

stable set S of equilibria of a game, if we remove a strategy for some player i that is not a 

best reply to the strategies of players −i at any equilibrium in the set, then the remaining 
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game has a stable set of equilibria contained in S. This means that the concept of stable 

equilibrium robust to forward induction: knowing that player i will not use a particular 

strategy does not create new equilibria in the stable set. 

There are actually a lot of stability concepts in the literature. Mertens has more papers 

with alternative definitions. 

Every equilibrium in a stable set has to be a perfect equilibrium. This follows from the 

minimality condition — if an equilbrium is not a limiting equilibrium along some sequence 

of trembles, then there’s no need to include it in the stable set. But notice, these equilibria 

are only guaranteed to be perfect in the normal form, not in the agent-normal form (if the 

game represented is an extensive-form one). 

Some recent papers further develop these ideas. Battigalli and Siniscalchi (2002) are in­

terested in the epistemic conditions that lead to forward induction. They have an epistemic 

model, with state of nature of the form ω = (si, ti)i∈N , where si represents player i’s dispo­

sition to act and ti represents his disposition to believe. ti specifies a belief gi,h ∈ Δ(Ω−i) 

over states of the other players for each information set h of player i. We saw i is rational 

at state ω if si is a best reply to his beliefs ti at each information set. Let R be the set 

of states at which every player is rational. For any event E ⊆ Ω, we can define the set 

Bi,h(E) = {(s, t) ∈ Ω | gi,h(E) = 1}, i.e. the set of states where i is sure that E has occurred 

(at information set h). We can define Bh(E) = ∩iBi,h. Finally SBi(E) = ∩hBi,h(E), the 

set of states at which i strongly believes in event E, meaning the set of states at which i 

would be sure of E as long as he’s reached an information set where E is possible. Finally, 

they show that SB(R) identifies forward induction — that is, in the states of the world 

where everyone strongly believes that everyone is sequentially rational, strategies must form 

a profile that is not ruled out by forward induction. 

Battigalli and Siniscalchi take this a level further by iterating the strong-beliefs operator 

— everyone strongly believes that everyone strongly believes that everyone is rational, and 

so forth — and this operator leads to backward induction in games of perfect information; 

without perfect information, it leads to iterated deletion of strategies that are never a best 

reply. This gives a formalization of the idea of rationalizability in extensive-form games. 
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21. Repeated games 

We now consider the standard model of repeated games. Let G = (N,A, u) be a normal-

form stage game. At time t = 0, 1, . . ., the players simultaneously play game G. At each 

period, the players can all observe play in each previous period; the history is denoted ht = 

0(a , . . . , at−1). Payoffs in the repeated game RG(δ) are given by Ui = (1 − δi)
�∞ δi

tui(a
t).t=0 

The (1 − δi) factor normalizes the sum so that payoffs in the repeated game are on the same 

scale as in the stage game. We assume players play behavior strategies (by Kuhn’s theorem), 

so a strategy for player i is given by a choice of σi(h
t) ∈ Δ(Ai) for each history ht . 

Given such strategies, we can define continuation payoffs after any history ht: Ui(σ ht).|
If α∗ is a Nash equilibrium of the static game, then playing α∗ at every history is a 

subgame-perfect equilibrium of the repeated game. Conversely: for any finite game G and 

any ε > 0, there exists δ̄ with the property that, for any δ < δ̄, any SPE of the repeated 

game RG(δ) has the property that, at every history, play is within ε of a static NE. However, 

we usually care about players with high discount factors, not low discount factors. 

The main results for repeated games are “Folk Theorems”: for high enough δ, every 

feasible and individually rational payoff in the stage game can be enforced as an equilibrium 

of the repeated game. There are several versions of such a theorem, which is why we use the 

plural. For now, we look at repeated games with perfect monitoring (as just defined), where 

the appropriate equilibrium concept is SPE. The way to check an SPE is via the one-shot 

deviation principle. Payoffs from playing a at history ht are given by the value function 

(21.1) Vi(a) = (1 − δ)ui(a) + δUi(σ|ht , a). 

This gives us an easy way to check whether or not a player wants to deviate from a proposed 

strategy, given other player’s strategies. σ is an SPE if and only if, for every history ht , σ ht|
is a NE of the induced game G(ht, σ) whose payoffs are given by (21.1). 

To state a folk theorem, we need to explain the terms “individually rational” and “feasi­

ble.” The minmax payoff of player i is the worst payoff his opponents can hold him down 

to if he knows their strategies: 

vi = min max ui(ai, α−i) . 
α−i∈

Q
j=i Δ(Aj) ai∈Ai 
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We will let mi, a minmax profile for i, denote a profile of strategies (ai, α−i) that solves 

this minimization and maximization problem. Note that we require independent mixing by 

i’s opponents. 

In any SPE — in fact, any Nash equilibrium — i’s payoff is at least his minmax payoff, 

since he can always get at least this much by just best-responding to his opponents’ (possibly 

independently mixed) actions in each period separately. This motivates us to say that a 

payoff vector v is individually rational if vi ≥ vi for each i, and it is strictly individually 

rational if the inequality is strict for each i. 

The set of feasible payoffs is the convex hull of the set {u(a) | a ∈ A}. Again note that 

this can include payoffs that are not obtainable in the stage game using mixed strategies, 

because correlation between players may be required. 

Also, in studying repeated games we usually assume the availability of a public random­

ization device that produces a publicly observed signal ωt ∈ [0, 1], uniformly distributed 

and independent across periods, so that players can condition their actions on the signal. 

Properly, we should include the signals (or at least the current period’s signal) in the spec­

ification of the history, but it is conventional not to write it out explicitly. The public 

randomization device is a convenient way to convexity the set of possible equilibrium payoff 

vectors. (Fudenberg and Maskin (1991) showed that one can actually do this without the 

public randomization device for sufficiently high δ, by appropriate choice of which periods 

to play each action profile involved in any given convex combination.) 

An easy folk theorem is that of Friedman (1971): 

Theorem 16. If e the payoff vector of some Nash equilibrium of G, and v is a feasible payoff 

vector with vi > ei for each i, then for all sufficiently high δ, there exists an SPE with payoffs 

v. 

Proof. Just specify that the players play whichever action profile gives payoffs v (using the 

public randomization device to correlate their actions if necessary), and revert to the static 

Nash permanently if anyone has ever deviated. � 

So, for example, if there is a Nash equilibrium that gives everyone their minmax payoff 

(for example, in the prisoner’s dilemma), then every individually rational and feasible payoff 

vector is obtainable in SPE. 
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However, it would be nice to have a full, or nearly full, characterization of the set of 

possible equilibrium payoff vectors (for large δ). In many repeated games, the Friedman folk 

theorem is not strong enough for this. A more general folk theorem would say that every 

individually rational, feasible payoff is achievable in SPE under general conditions. This is 

harder to show, because in order for one player to be punished by minmax if he deviates, 

others need to be willing to punish him. Thus, for example, if all players have equal payoffs, 

then it may not be possible to punish a player for deviating, because the punisher hurts 

himself as well as the deviator. 

For this reason, the standard folk theorem (due to Fudenberg and Maskin, 1986) requires 

a full-dimensionality condition. 

Theorem 17. Suppose the set of feasible payoffs V has full dimension n. For any feasible 

and strictly individually rational payoff vector v, there exists δ such that whenever δ > δ, 

there exists an SPE of RG(δ) with payoffs v. 

Actually we don’t quite need the full-dimensionality condition — all we need, conceptually, 

is that there are no two players who have the same payoff functions; more precisely, no 

player’s payoff function can be a positive affine transformation of any other’s (Abreu, Dutta, 

& Smith, 1994). But the proof is easier under the stronger version. 

Proof. We will assume that i’s minmax action profile mi is pure. Consider the action profile 

a for which u(a) = v. Choose v� in the interior of the feasible, individually rational set with 

vi
� < vi for each i. We can do this by full-dimensionality. Let wi denote vi

� with ε added 

to each player’s payoff except for player i; with ε low enough, this will again be a feasible 

payoff vector. 

Strategies are now specified as follows. 

•	 Phase I: play a, as long as there are no deviations. If i deviates, switch to IIi. 

Phase IIi: play mi . If player j deviates, switch to IIj. Note that if mi is a pure • 

strategy profile it is clear what we mean by j deviating. If it requires mixing it is 

not so clear; this will be dealt with in the second part of the proof. Phase IIi lasts 

for N periods, where N is a number to be determined, and if there are no deviations 

during this time, play switches to IIIi. 
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Phase IIIi: play the action profile leading to payoffs wi forever. If j deviates, go to • 

IIj. (This is the “reward” phase that gives players −i incentives to punish in phase 

IIi.) 

We check that there are no incentives to deviate, using the one-shot deviation principle 

for each of the three phases: calculate the payoff to i from complying and from deviating 

in each phase. Phases IIi and IIj (j = i) need to be considered separately, as do IIIi and 

IIIj. 

Phase I: deviating gives at most (1− δ)M + δ(1 − δN)vi + δN+1vi
�, where M is some • 

upper bound on all of i’s feasible payoffs, and complying gives vi. Whatever N we 

have chosen, it is clear that as long as δ is sufficiently close to 1, complying produces 

a higher payoff than deviating, since vi
� < vi. 

•	 Phase IIi: Suppose there are N � ≤ N remaining periods in this phase. Then comply­

ing gives i a payoff of (1−δN � 
)vi+δN � 

vi
�, whereas since i is being minmaxed, deviating 

can’t help in the current period and leads to N more periods of punishment, for a 

total payoff of at most (1 − δN+1)vi + δN+1vi
�. Thus deviating is always worse than 

complying. 

Phase IIj: With N � remaining periods, i gets (1 − δN � 
)ui(m

j) + δN � 
(vj
� + ε) from • 

complying and at most (1 − δ)M +(δ− δN)vi + δNvi
� from deviating. When δ is large 

enough, complying is preferred. 

Phase IIIi: This is the one case that affects the choice of N . Complying gives v�•	 i 

in every period, while deviating gives at most (1 − δ)M + δ(1 − δN)vi + δN+1vi
�. 

Canceling out common terms, the comparison is between ((1 − δN+1)/(1 − δ))vi
� and 

M + ((1 − δN)/(1 − δ))vi. The fractions approach N + 1 and N as δ 1. So for → 

sufficiently large N and δ close enough to 1, the desired inequality will hold. 

•	 Phase IIIj: Complying gives vi
� + ε forever, whereas deviating leads to a switch to 

phase IIi and so gives at most (1 −δ)M +δ(1−δN)vi +δN+1vi
�. Again, for sufficiently 

large δ, complying is preferred. 

Now we need to deal with the part where minmax strategies are mixed. For this we need to 

change the strategies so that, during phase IIj, player i is indifferent among all the possible 

sequences of N realizations of his prescribed mixed action. We accomplish this by choosing 
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a different reward ε for each such sequence, so as to balance out their different short-term 

payoffs. We’re not going to talk about this in detail; see the Fudenberg and Maskin paper 

for this. 

22. Repeated games with fixed δ < 1 

The folk theorem shows that many payoffs are possible in SPE. But the construction of 

strategies in the proof is fairly complicated, since we have to have punishments and then 

rewards for punishers to induce them not to deviate. Also, the folk theorem is concerned 

with limits as δ 1, whereas we may be interested in the set of equilibria for a particular → 

value of δ < 1. 

We will now approach the question of identifying equilibrium payoffs for a given δ < 1. 

In repeated games with perfect information, it turns out that an insight of Abreu (1988) 

will simplify the analysis greatly: equilibrium strategies can be enforced by using a worst 

possible punishment for any deviator. First we need to show that there is a well-defined 

worst possible punishment. 

Theorem 18. Suppose each player’s action set in the stage game is compact and payoffs 

are continuous in actions, and some pure-strategy SPE of the repeated game exists. Then, 

among all pure-strategy SPEs, there is one that is worst for player i. 

That is, the infimum of player i’s payoffs, across all pure-strategy SPEs, is attained. 

Proof. We prove this for every player i simultaneously. Fix a sequence of equilibrium play 

paths (not strategy profiles) si,k, k = 0, 1, 2, . . . such that Ui(s
i,k) converges to the specified 

infimum y(i). We want to define a limit of the strategy profiles, in such a way that the 

limiting profile is again an SPE with payoff y(i) to player i. 

Each strategy profile is an element of the strategy space 
�

t A, where A is the action 

space of the stage game and t ranges over all periods. By Tychonoff’s theorem, this strategy 

space, with the product topology, is compact. Convergence in the product topology is 

i,k i,k i,
t 
∞defined componentwise — that is, s si,∞ if and only if st s for each t. Because → → 

the strategy space is compact, by passing to a subsequence if necessary, we can ensure that 
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the si,k have a limiting play path. It is easy to check that the resulting payoff to player i is 

y(i). 

Now we just have to check that this limiting play path si,∞ is supportable as an SPE by 

some strategy profile. We construct the following profile: All players play according to si,∞. 

If j deviates, switch to the strategy profile supporting sj,∞ constructed above. 

Now, we need to check that the N strategy profiles constructed this way are really SPEs. 

But suppose we are in the strategy profile si,∞ and j (who may or may not equal i) deviates 

at some period τ . His payoff from deviating is 

i,∞(1 − δ)uj(�aj, a−j (τ)) + δy(j). 

We want to show that this is at most the continuation payoff, 

∞
δt i,∞(τ(1 − δ)

� 
uj(a + t)). 

t=0 

But we know that for each k, j does not have incentive to deviate in the SPE whose equi­

librium play path is si,k; and by deviating his value in future periods is at least y(j) (by 

definition of y(j)). So for each k we have 

∞
δt i,k(τ i,k(1 − δ)

� 
uj(a + t)) ≥ uj(�aj, a (τ)) + δy(j).−j

t=0 

By taking limits at k →∞, we see that there is no incentive to deviate in the strategy profile 

supporting si,∞, either. 

This shows there are never incentives for a one-shot deviation. So by the one-shot deviation 

principle, we do have an SPE giving i his infimum of SPE payoffs, for any player i. � 

Abreu refers to an SPE that gives i his worst possible payoff as an optimal penal code. 

The above theorem applies when there exists a pure-strategy SPE. If the stage game is 

finite, there frequently will not be any pure-strategy SPE. In this case, there will be mixed-

strategy SPE, and we would like to again prove that an optimal (mixed-strategy) penal code 

exists. A different method is required: 

Theorem 19. Consider an infinite-horizon repeated game where the stage game has finite 

action spaces. Each player i’s strategy space is simply the countable product 
�

ht 
Δ(Ai), 
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taken over all possible finite histories ht. Put the product topology on this space. Then, the 

set of SPE profiles is nonempty and compact. 

They show this by giving an equivalence between SPE of the infinitely repeated game and 

limits of near-equilibria of the T -period repeated game as T →∞. One can verify that the 

payoff functions are continuous on the space of strategy profiles of the repeated game; hence 

it follows that for each player i, there is some SPE that is worst for player i, that is, an 

optimal penal code. 

Now we give a result applying the existence theorem. This result holds in either of the 

settings where an optimal penal code exists — either for pure strategies when the stage game 

has continuous action spaces (and some SPE exists), or for mixed strategies when the stage 

game is finite. 

Theorem 20. (Abreu, 1988) Suppose the stage game has compact action spaces and contin­

uous payoffs. Then any distribution over outcomes achievable by an SPE can be generated 

by strategies that have optimal penal codes used off the equilibrium path, i.e. when i is the 

first to deviate, continuation play follows the optimal penal code for i. 

Proof. This is straightforward. Let �s be the given SPE. Form a new strategy profile s by 

leaving play on the equilibrium path as proposed by �s, and replacing play off the equilibrium 

path by the optimal penal code for i when i is the first deviator (or one of the first deviators, 

if there is more than one). By the one-shot deviation principle, we need only check that i 

does not want to deviate when play so far is on the equilibrium path — but this is immediate, 

because i is punished with y(i) in the continuation if he deviates, whereas in the original 

profile s� he would get at least y(i) in the continuation (by definition of y(i)) and we know 

this was already low enough to deter deviation (because s� was an SPE). � 

Now we look at Abreu (1986). Among other things, this paper looks at symmetric games 

and considers strongly symmetric equilibria — equilibria which have every player playing 

identically at every history, including asymmetric histories. This is a simple setting because 

everyone gets the same payoff, so there is one such equilibrium that is worst for everyone. 

One can similarly show that there is an equilibrium that is best for everyone. (Abreu does 

this in a setting where punishments can be made arbitrarily bad, so the good equilibrium 
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can be sustained by punishments that last only one period. This is a very big simplifying 

assumption.) Then, describing the set of strongly symmetric equilibrium payoffs is simple — 

there are just two numbers, a worst and a best payoff, and we just have to write the incentive 

constraints relating the two, which makes computing these extremal equilibria fairly easy. 

Typically the best outcome is better than the best static Nash equilibrium. 

23. Imperfect Public Monitoring 

Next is Green and Porter (1984). This is the classic example of a repeated game with 

imperfect public monitoring: players only see a signal of other players’ past actions, rather 

than observing the actions fully. 

More specifically, each period there is a publicly observed signal y which follows some 

probability distribution conditional on the action profile a. Each player i’s payoff is ri(ai, y), 

something that depends only on his own action and the signal. His expected payoff from a 

strategy profile is then ui(a) = 
�

y∈Y ri(ai, y)p(y|a). In the Green-Porter model, each player 

is a firm in a cartel that sets a production quantity. Quantities are only privately observed. 

There is also a market price, which is publicly observed and depends stochastically on the 

players’ quantity choices (thus there is a demand shock each period). Each firm’s payoff is 

the product of the market price and its quantity as usual. So the firms are trying to collude 

by keeping quantities low and prices high, but in any given period prices may be low, and 

each firm doesn’t know if prices are low because of a low shock or because some other firm 

deviated and produced a high quantity. In particular, Green and Porter assume that the 

support of the price signal y does not depend on the action profile played, which ensures 

that a low price may occur even when no firm has deviated. 

Green and Porter did not try to solve for all equilibria of their model. Instead they simply 

discussed the idea of threshold equilibria: everyone plays the collusive action profile â for 

a while; if the price y is ever observed to be below some threshold ŷ, revert to static Nash 

for some number of periods T , and then return to the collusion phase. (Note: this is not 

pushing the limits of what is feasible, since, for example, Abreu’s work implies that there 

are worse punishments possible than just reverting to static Nash.) 
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They define λ(â) = P (y > ŷ â), the probability of seeing a high price when there was no |
deviation. Equilibrium values are then given by 

v̂ = (1 − δ)ui(â) + δλ(â)v̂ + δ(1 − λ(â))δT v̂

(writing 0 for the static Nash payoffs). This lets us calculate v̂ for any proposed â and T . 

These strategies form an equilibrium only if no player wants to deviate in the collusive phase: 

ui(ai
� , â−i)− ui(â) ≤ δ(1 − δT )ui(â)(λ(â)− λ(a�i, â−i)) 

for all possible deviations ai
� . This compares the short-term incentives to deviate, the relative 

probability that deviation will trigger a reversion to static Nash, and the severity of the 

punishment. 

Green and Porter showed that it is possible to sustain payoffs at least slightly above static 

Nash with strategies of this sort. As already remarked, they did not find the best possible 

equilibria. 

Now we return to the setting of general repeated games with imperfect public monitoring; 

the notation is as laid out at the beginning of this section. We will present the theory of 

these games as developed by Abreu, Pearce, and Stacchetti (1990) (hereafter referred to as 

APS). 

For convenience we will assume that the action spaces Ai and the space Y of possible 

signals are finite. We will also write πy(a) for the probability distribution over y given action 

profile a (previously notated p(y a)). It is clear how to generalize this to the distribution |
πy(α) where α is a mixed action profile. 

If there were just one period, players would just be playing the normal-form game with 

action sets Ai and payoffs ui(a) = 
�

y∈Y πy(a)ri(ai, y). With repetition, this is no longer the 

case since play can be conditioned on the history — but may not be able to be conditioned 

exactly on past actions of opponents, as in the earlier, perfect-monitoring setting, because 

players do not see their opponents’ actions. 

Notice that the perfect monitoring setting can be embedded into this framework, by simply 

letting Y = A be the space of action profiles, and y be the action profile actually played 

with probability 1. We can also embed “noisy” repeated games with perfect monitoring, 

where each agent tries to play a particular action ai in each period but ends up playing any 



NON-COOPERATIVE GAMES 47 

other action ai
� with some small probability ε; each player can only observe the action profile 

actually played, rather than the actions that the opponents “tried” to play. 

In such a game, at any time t, player i’s information is given by his private history 

ht
i = (y 0 , . . . , y t−1; ai

0 , . . . , a ti
−1). 

That is, he knows the history of public signals and his own actions (but not others’ actions). 

He can condition his action in the present period on this information. The public history 

ht = (y0 , . . . , yt−1) is commonly known. 

APS restrict attention to pure strategies, which is a nontrivial restriction. 

A strategy σi for player i is a public strategy if σi(h
t
i) depends only on the history of 

public signals y0 , . . . , yt−1 . 

Lemma 1. Every pure strategy is equivalent to a public strategy. 

Proof. Let σi be a pure strategy. Define a public strategy σi
� on length-t histories by induction: 

σi
�(y0 , . . . , yt−1) = σi(y

0 , . . . , yt−1; ai
0 , . . . , a ti

−1) where as
i = σi

�(y0 , . . . , ys−1) for each s < t. 

That is, at each period, i plays the actions specified by σi for the given public signals and 

the history of private actions that i was supposed to play. It is straightforward to check 

that σi
� is equivalent to σi, since they differ only at “off-path” histories reachable only by 

deviations of player i. � 

This shows that if attention is restricted to pure strategies, it is no further loss to restrict 

in turn to public strategies. However, instead of doing this, we will follow the exposition of 

Fudenberg and Tirole and restrict to public (but potentially mixed) strategies. 

Lemma 2. If i’s opponents use public strategies, then i has a best reply in public strategies. 

Proof. This is straightforward — i always knows what the other players will play, since their 

actions depend only on the public history; hence i can just play a best response to their 

anticipated future play, which does not depend on i’s private history of past actions. � 

This allows us to define a public perfect equilibrium (PPE): a profile σ = (σi) of public 

strategies such that, at every public history ht = (y0 , . . . , yt−1), the strategies σi ht form a|
Nash equilibrium of the continuation game. 
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(This is the straightforward adaptation of the concept of subgame-perfect equilibrium to 

our setting. Notice that we cannot simply use subgame-perfect equilibrium because it has 

no bite in general — there are no subgames.) 

The set of PPE’s is stationary — they are the same at every history. This is why we look 

at PPE. Sequential equilibrium does not share this stationarity property, because a player 

may want to play differently in one period depending on the realization of his mixing in a 

previous period. Such correlation across periods can be self-sustaining in equilibrium: if i 

and j both mixed at a previous period s, then the signal in that period gives i information 

about the realization of j’s mixing, which means it is informative about what j will do in the 

current period, and therefore affects i’s current best reply. Consequently, different players 

can have different information at time t about what will be played at time t, and stationarity 

is destroyed. We stick to public equilibria in order to avoid this difficulty. 

Importantly, the one-shot deviation principle applies to our setting. That is, a set of public 

strategies constitutes a PPE if and only if there is no beneficial one-shot deviation for any 

player. 

Let w : Y Rn be a function; wi(y) denotes the continuation payoff player i expects to → 

get when the signal y is realized, from some strategy profile. This gives rise to the following 

definition: 

Definition 13. A pair consisting of a (mixed) action profile α and payoff vector v ∈ Rn is 

enforceable with respect to W ⊆ Rn if there exists w : Y W such that → 

vi = (1 − δ)ui(α) + δ
� 

πy(α)wi(y) 
y∈Y 

and 

vi ≥ (1 − δ)ui(a
�
i, α−i) + δ

� 
πy(a

�
i, α−i)wi(y) 

y∈Y 

for all a�i ∈ Ai. (Here ui denotes the expected stage payoff function defined above.) 

The idea of enforceability is that it is incentive-compatible for each player to play according 

to α in the present period if continuation payoffs are given by w, and the resulting (expected) 

payoffs starting from the present period are given by v. 

Let B(W ) be the set of all v that are enforceable with respect to W , for some action 

profile α. This is the set of payoffs generated by W . 
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Theorem 21. Let E be the set of payoff vectors that are achieved by some PPE. Then 

E = B(E). 

Proof. For any v ∈ E generated by some strategy profile σ, let αi = σi(∅) and wi(y) be the 

expected continuation payoff of player i in subsequent periods given that y is the realized 

signal. Since play in subsequent periods again forms a PPE, w(y) ∈ E for each signal 

realization y. Then (α, v) is enforced by w on E — this is exactly the statement that v 

represents the overall expected payoffs and the players are willing to play according to α in 

the first period. So v ∈ B(E). 

Conversely, if v B(E), let (α, v) be enforced by w on E. Consider the strategies∈ 

defined as follows: play α in the first period, and whatever signal y is observed, play in 

subsequent periods follows a PPE with payoffs w(y). These strategies form a PPE, by the 

one-shot deviation principle: enforcement means that there is no incentive to deviate in 

the first period, and the fact that continuation play is given by a PPE ensures that there 

is no incentive to deviate in any subsequent period. Finally it is straightforward from the 

definition of enforcement that the payoffs are in fact given by v. Thus v ∈ E. � 

Definition 14. W ⊆ Rn is self-generating if W ⊆ B(W ). 

Thus, we have just shown that E, the set of equilibrium payoffs, is self-generating. 

Theorem 22. If W is a bounded, self-generating set, then W ⊆ E. 

This theorem shows that E is actually the largest bounded self-generating set. 

Proof. Let v ∈ W . We want to construct a PPE with payoffs given by v. We construct the 

strategies iteratively. Suppose we have specified play for periods 0, . . . , t − 1. We want to 

specify how players should play at period t. We do this by simultaneously specifying the 

continuation payoffs players should receive at each public history beginning in period t + 1. 

(The base case, t = 0, has players receiving continuation payoffs given by v.) 

Suppose the history of public signals so far is y0 , . . . , yt−1 and promised continuation 

payoffs are given by v� ∈ W . Because W is self-generating, there is some action profile α 

and some w : Y W such that (α, v) is enforced by w. Specify that the players play α at → 

this history, and whatever signal y is observed, their continuation payoffs starting from the 

next period should be w(y). 
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These strategies form a PPE — this is easily checked using the one-shot deviation principle; 

enforcement means exactly that there are no incentives to deviate in any period. Finally, 

the expected payoffs at time 0 are just given by v; this follows from adding up (and using 

boundedness to make sure that the series of payoffs coverges appropriately). � 

In addition to having this characterization of the set of PPE payoffs, Abreu, Pearce, and 

Stacchetti also show a monotonicity property with respect to the discount factor. Let E(δ) 

be the set of PPE payoffs when the discount factor is δ. Suppose that E(δ) is convex: this 

can be achieved either by incorporating public randomization into the model, or by having 

a sufficiently rich space of public signals (we can’t do this in our model because Y is finite). 

Then if δ1 < δ2 they have E(δ1) ⊆ B(E(δ1), δ2), and therefore, by the previous theorem, 

E(δ1) ⊆ E(δ2). This is shown by the following approach: given v ∈ E(δ1) = B(E(δ1), δ1), 

find α and w that enforce v when the discount factor is δ1; by replacing w by a suitable 

convex combination of w and a constant function, we can enforce (α, v) when the discount 

factor is δ2. 

Some other facts about the B operator: 

•	 If W is compact, so is B(W ). This is shown by a straightforward (boring) topological 

argument. 

•	 B is monotone: if W ⊆ W � then B(W ) ⊆ B(W �). Also easy to see. 

•	 If W is nonempty, so is B(W ). To see this, just let α be a Nash equilibrium of the 

stage game and v the resulting payoffs. 

Now let V be the set of all feasible payoffs, which is certainly compact. Think about 

the sequence of iterates B0(V ), B1(V ), . . ., where B0(v) = V and Bk(V ) = B(Bk−1(V )). 

By induction, these sets are all compact and they form a decreasing sequence. Hence, their 

intersection is compact. If we let B∞(V ) denote this intersection, then B∞(V ) = B(B∞(V )), 

and hence B∞(V ) ⊆ E. On the other hand, E ⊆ V , and hence by induction E is contained 

in each term of the sequence. Therefore E ⊆ B∞(V ). In conclusion: 

Theorem 23. E = B∞(V ). 

This is the main theorem of APS. It gives a characterization of the set of PPE payoffs: 

start with the set of all feasible payoffs, and apply the operator B repeatedly; the resulting 

sequence of sets converges to the set of equilibrium payoffs. 
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Corollary 3. The set of PPE payoff vectors is nonempty and compact. 

(Nonemptiness is immediate because, for example, the infinite repetition of any static NE 

is a PPE.) 

APS also show a “bang-bang” property of public perfect equilibria. We say that w : 

Y W has the bang-bang property if w(y) is an extreme point of W for each y. Under → 

appropriate assumptions on the signal structure, they show that if (α, v) is enforceable on a 

compact W , it is in fact enforceable on the set ext(W ) of extreme points of W . Consequently, 

every vector in E can be achieved as the vector of payoffs from a PPE such that the vector 

of continuation payoffs at every history lies in ext(E). 

Fudenberg, Levine, and Maskin (1994) (hereafter FLM) show a folk theorem for repeated 

games with imperfect public monitoring. They find conditions on the game under which they 

can find a convex set W with a smoothly curved boundary, approximating the set of feasible, 

individually rational payoffs arbitrarily closely; then they can show that W is self-generating 

for a sufficiently high discount factor. This implies that a folk theorem obtains. 

We will briefly discuss what the technical difficulties are in the course of proving this. 

First, there has to be identifiability of each player’s actions. If player i’s deviation to a�i 

generates exactly the same distribution over signals as some ai he is supposed to play (given 

opponents’ play α−i), but gives him a higher payoff on average, then clearly there is no way to 

enforce the action profile a in equilibrium. The same problem may arise if ai is not effectively 

imitated by playing another pure action a�i, but it is imitated by playing some mixture of 

other actions. To avoid this problem, FLM assume a full-rank condition: given α−i, the 

different signal distributions generated by varying i’s action ai are linearly independent. 

They need to further assume a “pairwise full rank” condition: deviations by player i are 

statistically distinguishable from deviations by player j. Intuitively this is necessary because, 

if the signal suggests that someone has deviated, the players need to know who to punish. 

(Radner, Myerson, and Maskin, 1986, give an example of a game that violates this condition 

and where the folk theorem does not hold. There are two workers who put in effort to increase 

the probability that a project succeeds; they both get 1 if it succeeds and 0 otherwise. The 

outcome of the project does not statistically distinguish between shirking by player 1 and 

shirking by player 2. So if the project fails, both players have to be punished by giving them 
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lower continuation payoffs than if it succeeds. Because it fails some of the time even if both 

players are working, this means that equilibrium payoffs are bounded away from efficiency, 

even as δ 1.)→ 

The statement of the pairwise full rank condition is as follows: given the action profile α, 

if we form one matrix whose rows represent the signal distributions from (ai, α−i) as ai varies 

over Ai, and another matrix whose rows represent the signal distributions from (aj, α−j) as 

aj varies over Aj, and stack these two matrices, the combined matrix has rank |Ai|+ |Aj|−1. 

(This is effectively “full rank” — it is not possible to have literal full rank + , since |Ai| |Aj|
the signal distribution generated by α is a linear combination of the rows of the first matrix 

and is also a linear combination of the rows of the second matrix.) 

When this condition is satisfied, it is possible to use continuation payoffs to transfer utility 

between the two players i, j in any desired ratio, depending on the signal, so as to incentivize 

i and j to play according to the desired action profile. 

FLM show that the W they construct is locally self-generating: for every v ∈ W , there 

is an open neighborhood U and a δ < 1 such that U∩W ⊆ B(W ) when δ > δ. This definition 

allows δ to vary with v. For W compact and convex, they show that local self-generation 

implies self-generation for all sufficiently high δ. 

The intuition behind their approach is best grasped with a picture. Suppose we want to 

achieve some payoff vector v on the boundary of W . The full-rank conditions ensure we can 

enforce it using some continuation payoffs that lie below the tangent hyperplane to W at 

v, by “transferring” continuation utility between players as described above. As δ 1, the → 

continuation payoffs sufficient to enforce v contract toward v, and the smoothness condition 

on the boundary of W ensures that they will eventually lie inside W . Thus (α, v) is enforced 

on W . 

[PICTURE — See p. 1013 of Fudenberg, Levine, Maskin (1994)] 

Some extra work is needed to take care of the points v where the tangent hyperplane is a 

coordinate hyperplane (i.e. one player’s payoff is constant on this hyperplane). 

An argument along these lines shows that every vector on the boundary of W is achievable 

using continuation payoffs in W , when δ is high enough. Using public randomization among 
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boundary points, we can then achieve any payoff vector v in the interior of W as well. It 

follows that W is self-generating (for high δ). 

24. Reputation 

The earliest repeated-game models of reputation were by the Gang of Four (Kreps, Mil­

grom, Roberts, and Wilson); in various combinations they wrote three papers that were 

simultaneously published in JET 1982. 

The motivating example was the “chain-store paradox.” In the chain-store game, there 

are two players, an entering firm and an incumbent monopolist. The entrant (player 1) can 

enter or stay out; if it enters, the incumbent (player 2) can fight or not. If the entrant stays 

out, payoffs are (0, a) where a > 1. If the entrant enters and the incumbent does not fight, 

the payoffs are (b, 0) where b ∈ (0, 1). If they do fight, payoffs are (b − 1,−1). There is a 

unique SPE in which the entrant enters and the incumbent does not fight. 

In reality, incumbent firms seem to fight when a rival enters, and thereby deter other 

potential rivals. Why would they do this? In a one-shot game, it is irrational for the 

incumbent to fight the entrant. As pointed out by Selten, even if the game is repeated finitely 

many times, the unique SPE still has the property that there is entry and accommodation 

in every period, by backward induction. 

The Kreps-Wilson explanation for entry deterrence is as follows: with some small positive 

probability, the monopolist does not have the payoffs described above, but rather is obsessed 

with fighting and has payoffs such that it always chooses to fight. Then, when there are a 

large number of periods, they show that there is no entry for most of the game, with entry 

occurring only in the last few periods. 

Their analysis is tedious, so we will instead begin with a simpler example: the centipede 

game. Initially both players have 1 dollar. Player 1 can end the game (giving payoffs (1, 1)), 

or he can give up 1 dollar for player 2 to get 2 dollars. Player 2 can then end the game 

(giving (0, 3)), or can give up 1 for player 1 to get 2. Player 1 can then end the game (with 

payoffs (2, 2)), or can give up 1 for player 2 to get 2. And so forth — until the payoffs reach 

(100, 100), at which point the game is forced to end. (See the illustration on Muhamet’s 

slides. We will refer to continuing the game as “playing across” and ending as “playing 

down,” due to the shape of the centipede diagram.) 
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There is a unique SPE in this game, in which case both players play down at every 

opportunity. But believing in SPE requires us to hold very strong assumptions about the 

players’ higher-order knowledge of each other’s rationality. 

Suppose instead that player 1 has two types. With probability 0.999, he is a “normal” 

type and his payoffs are above. With probability 0.001, he is a “crazy” type who always gets 

utility −1 if he ends the game and 0 if player 2 ends the game. (Player 2’s payoffs are the 

same regardless of 1’s type.) The crazy type of player 1 thus always wants to continue the 

game. Player 2 never observes player 1’s type. 

What happens in equilibrium? Initially player 1 has a low probability of being the crazy 

type. If the normal player 1 plays down at some information set, and the crazy player 1 

does not, then after 1 plays across, player 2 must infer that he is crazy. But if player 1 is 

crazy then he will continue the game until the end; knowing this, player 2 also wants to play 

across. Anticipating this, the normal type of player 1 in turn also wants to play across in 

order to get a high payoff. 

With this intuition laid out, let’s analyze the game formally and describe all the sequential 

equilibria. Number the periods, starting from the end, with 1 being player 2’s last information 

set, 2 being player 1’s previous information set, . . ., 198 being 1’s first information set. It is 

easy to see that the crazy player 1 always plays across. 

Player 2 always plays across with positive probability at every period n > 1. (Proof: if 

not, then the normal player 1 must play down at period n+1. Then, conditional on reaching 

n, player 2 knows that 1 is crazy with probability 1, hence he would rather go across and 

continue the game to the end.) 

Hence there is positive probability of going across at every period, so the beliefs are 

uniquely determined from the equilibrium strategies by Bayes’s rule. 

Next we see that the normal player 1 plays across with positive probability at every n > 2. 

Proof: if not, then again, at n− 1 player 2 is sure that he is facing a crazy type and therefore 

wants to go across. Given this strategy by player 2, then, the normal 1 also has incentives 

to go across at n so that he can go down at n − 2, contradicting the assumption that 1 only 

goes down at n. 

Next, if 2 goes across with probability 1 at n, then 1 goes across with probability 1 at 

n + 1, and this in turn implies that 2 goes across with probability 1 at n + 2. This is also 
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seen by the same argument as in the previous paragraph. Therefore there is some cutoff 

n∗ ≥ 3 such that both players play across with probability 1 at n > n∗, and there is mixing 

for 2 < n ≤ n∗. (We know that both the normal 1 and 2 play down with probability 1 at 

n = 1, 2.) 

Let qn be the probability of player 2 going down at node n, if n is odd; let pn be the 

probability of player 1 going down at n, if n is even. Let µn be the probability player 2 

assigns to the crazy type at node n. 

At each odd node n, 2 < n ≤ n∗, player 2 is to be indifferent between going across and 

down. The payoff to going down is some x. The payoff to going across is (1 − µn)pn−1(x − 

1) + [1 − (1 − µn)pn−1](x + 1), using the fact that player 2 is again indifferent (or strictly 

prefers going down) two nodes later. Hence we get (1 − µn)pn−1 = 1/2: player 2 expects 

player 1 to play down with probability 1/2. But µn−2 = µn/(µn + (1 − µn)(1 − pn−1)) by 

Bayes’s rule; this simplifies to µn−2 = µn/(1 − (1 − µn)pn−1) = 2µn. We already know that 

µ1 = 1 since the normal player 1 goes down with certainty at node 2. Therefore µ3 = 1/2, 

µ5 = 1/4, and so forth; and in particular n∗ ≤ 20, since otherwise µ21 = 1/1024 < 0.001, 

but clearly the posterior probability of the crazy type at any node cannot be lower than the 

prior. This shows that for all but the last 20 periods, both players are going across with 

probability 1 in equilibrium. 

(One can in fact continue to solve for the complete description of the sequential equi­

librium: now that we know player 2’s posterior at each period, we can compute player 1’s 

mixing probabilities from Bayes’s rule, and we can also compute player 2’s mixing proba­

bilities given that 1 must be indifferent whenever he mixes. But we’ve already gotten the 

punch line of this model.) 

The papers by the Gang of Four consider repeated interactions between the same players, 

with one-sided incomplete information. Inspired by this work, Fudenberg and Levine (1989) 

consider a model in which a long-run player faces a series of short-run players, and where there 

are many possible “crazy” types of the long-run player, each with small positive probability. 

They show that if the long-run player is sufficiently patient, he will get close to his Stackelberg 

payoff in any Nash equilibrium of the repeated game. 

Let’s lay out the model. There are two players, playing the normal-form game (N,A, u) 

(with N = {1, 2}) in each period. Player 1 is a long-run player. Player 2 is a short-run 
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player (which we can think of as a series of players who play for one period each, or one very 

impatient player), who plays a best reply to player 1’s anticipated action in each stage. 

Let 

u∗1 = max min u1(a1, σ
2). 

a1∈A1 σ2∈BR2(a1) 

This is player 1’s Stackelberg payoff ; the action a∗1 that achieves this maximum is the 

Stackelberg action. The main paper of Fudenberg and Levine only allows a1 to be a pure 

action; in a follow-up paper three years later they allow for mixed actions by player 1, which 

is more complicated. 

A strategy for player 1 consists of a function σ1 
t : H t−1 Δ(A1) for each t ≥ 0. A → 

strategy for the player 2 who plays at time t consists of a function σ2 
t : H t−1 Δ(A2). With → 

the usual payoff formulation, we have the unperturbed game. Fudenberg, Kreps, and 

Maskin (1988) proved a version of the folk theorem for this game. Let u1 be the minimum 

payoff that player 1 can get given that player 2 is playing a best reply. Fudenberg, Kreps, 

and Maskin show that any payoff above u1 can be sustained in SPE for high enough δ. The 

main reputation result of Fudenberg and Levine shows that if there is a rich space of crazy 

types of player 1, each with positive probability, this folk theorem is completely overturned 

— player 1 is guaranteed to get close to u∗1 (or more) in any Nash equilibrium for high δ. 

We don’t even have to impose subgame-perfection. 

Accordingly, we consider the perturbed game, where there is a countable state space Ω. 

Player 1’s payoff depends on the state ω ∈ Ω; thus write u1(a1, a2, ω). Player 2’s payoff does 

not depend on ω. There is some common prior µ on Ω, but the true state is known only to 

player 1. When the state is ω0 ∈ Ω, player 1’s payoffs are given by the original u1; we call 

this the “rational” type of player 1. 

Suppose that for every a1 ∈ A1, there is a state ω(a1) for which playing a1 at every history 

is a strictly dominant strategy in the repeated game. (Assuming it is strictly dominant in 

the stage game is not enough.) Thus, at state ω(a1), player 1 is guaranteed to play a1 at 

every history. Write ω∗ = ω(a∗1). We assume also that the probability µ∗ = µ(ω∗) is strictly 

positive. That is, with positive probability, player 1 is a type who is guaranteed to play a∗1 

in every period. 
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Any strategy profile will lead to a joint probability distribution π over play paths and 

states, π ∈ Δ((A1 × A2)
∞ × Ω). Let h∗ be the event (in this path-state space) that at = a∗1 1 

for all t. Let π∗ = π(at = a∗|ht−1), the probability of seeing a∗ at period t given the previoust 1 1 1 

history; this is a random variable (defined on path-state space) whose value depends on ht−1. 

For any number π ∈ (0, 1), let n(πt
∗ ≤ π) denote the number of periods t such that πt

∗ ≤ π. 

This is again a random variable, whose value may be infinite. 

The crucial lemma is the following: 

Lemma 3. Let σ be a strategy profile such that π(h∗ ω∗) = 1. Then|
� 

ln(µ∗) 
����

�
π n(πt 

∗ ≤ π) > h∗ = 0. 
ln π 

That is, conditional on the play path being one where a∗1 is seen in every period, there are 

guaranteed (almost surely) to be at most ln(µ∗)/ ln π periods in which the probability of a∗1 

at the next period, given the previous history, is at most π. 

The proof is straightforward. Given that π(h∗ ω∗) = 1, if the true state is ω∗, then player|
1 will always play a∗1. Each time the probability of seeing a∗1 next period is less than π, if 

a∗1 is in fact played, the posterior probability of ω∗ must increase by a factor of at least 1/π. 

The posterior probability starts out at µ∗, and it can never exceed 1, so it can increase no 

more than ln(µ∗)/ ln(π) times. 

Formally, consider any finite history ht at which a∗1 has been played every period, and such 

that π(ht) > 0. Then we actually have by Bayes’s rule: 

π(ω∗ ht) = 
π(ω∗|ht−1)π(ht|ω∗, ht−1)

= 
π(ω∗|ht−1) 

.|
π(ht|ht−1) π(ht|ht−1) 

(Here the second equality holds because if ω∗ occurs then at 
1 = a1

∗.) Repeatedly expanding, 

we have 

π(ω∗|ht) = 
π(ht ht−1)π(h

π
t

(
−
ω
1

∗

h

|h
t−

0

2

)

) π(h1 h0) 
. | | · · · |

But the numerator of the right-hand side is exactly µ∗ while the left-hand side is at most 

1. So at most ln(µ∗)/ ln(π) of the denominator terms can be less than or equal to π. Since 

the denominator term π(hs hs−1) is at most πs
∗, the result follows: we cannot, with positive|

probability, see a history at which n(πt
∗ < π) > ln µ∗/ ln π. 

This lemma can be read as saying “a∗1 can be a surprise only so many times.” 
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Now we get to the main theorem. Let um = mina u1(a, ω0), the worst possible stage payoff 

for player 1. Denote by v1(δ, µ, ω0) the infimum across all Nash equilibria of the rational 

player 1’s payoffs in the repeated game, for given discount factor δ and prior µ. 

Theorem 24. For any value µ∗, there exists a number κ(µ∗) with the following property: 

for all δ and all (µ, Ω) with µ(ω∗) = µ∗, we have 

v1(δ, µ, ω0) ≥ δκ(µ∗)u∗1 + (1 − δκ(µ∗))um. 

As δ 1, then, this payoff bound converges to u∗1. → 

Proof. First, we will show that there exists a π < 1 such that, in every play path of every 

Nash equilibrium, at every stage t where πt
∗ > π, player 2 plays a best reply to a∗1. This is 

straightforward: if it is not true, there must be a sequence of mixed stage-game actions of 

player 1, converging to a∗1, such that for each of them, player 2 has a best reply that is not 

in BR2(a1
∗). By finiteness, some best reply a2 of player 2 occurs infinitely often. But then 

the theorem of the maximum implies this a2 is a best reply to a∗1, a contradiction. So the 

desired π exists. 

Thus, by the lemma, we have a number κ(µ∗) of periods such that π(n(π∗ π) >≤ 

κ(µ∗) h∗) = 0. Now, whatever player 2’s equilibrium strategy is, if the rational player | 
1 deviates to simply playing a∗1 every period, there are at most κ(µ∗) periods in which player 

2 will not play a best reply to a∗1 — since player 2 is playing a best reply to player 1’s 

expected play in each period. Thus the rational player 1 gets a stage payoff of at least 

um in each of these periods, and least u∗1 in all the other periods. This immediately gives 

that player 1’s payoff from deviating is at least δκ(µ∗)u∗ + (1 − δκ(µ∗))um. Since we have a 1 

Nash equilibrium, player 1’s payoff in equilibrium is at least his payoff from deviating. The 

theorem follows. � 

Notice that the payoff u∗1 we have looked at is a “lower Stackelberg payoff.” There is also 

an “upper Stackelberg payoff” in the stage game, 

u1 = max max u1(a1, a2), 
a1 σ2∈BR2(a1) 

and evidently player 1 cannot get more than the upper Stackelberg payoff (if he is playing


a pure strategy; otherwise the outer max should be taken over mixed strategies). In generic
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games, the lower and upper Stackelberg payoffs coincide, and so we get a unique equilibrium 

payoff for the normal player 1 in the limit as δ 1. → 

25. Reputation and Bargaining 

Abreu and Gul (2000) consider reputation in the context of bargaining. Suppose there are 

two players 1, 2 who have to split a pie of total size 1. Each player i can be either rational 

or a crazy type who just always demands a share αi of the pie. 

Abreu and Gul consider very general bargaining protocols; the details of the protocol turn 

out not to make a difference. There is a function g : [0,∞) → {0, 1, 2, 3}; g(t) indicates what 

happens at time t. If g(t) = 0 nothing happens; if g(t) = 1 then player 1 makes an offer and 

player 2 can accept or reject; if g(t) = 2 then player 2 makes an offer and player 1 can accept 

or reject; if g(t) = 3 then both players simultaneously offer, and if the offers are compatible 

(the shares the players claim sum to at most 1) then they get their shares and the surplus 

is split equally, otherwise the bargaining continues. 

Let Ti = {t | g(t) ∈ {i, 3}}, the set of times when i can make an offer. They consider 

a protocol such that each Ti is finite. They then consider a continuous bargaining limit by 

looking at a sequence gn of finite protocols such that for any ε and t, for all sufficiently large 

n, each player gets to offer between t and t + ε. 

For any such protocol, whenever either player i has revealed himself to be rational by 

doing anything other than demanding αi, there will be almost immediate agreement, and 

j can get himself a share close to αj by continuing to use his reputation. This is similar 

to the Fudenberg-Levine reputation result, but it turns out to be complicated to prove. So 

what happens in equilibrium if both players are rational? They play a war of attrition — 

each player pretends to be irrational but has some probability of conceding at each period 

(by revealing rationality), and as soon as one concedes the ensuing payoffs are those given 

by the reputation story. These concession probabilities must make each player indifferent 

between conceding and not; from this we can show that the probabilities are stationary, up 

to some finite time, and then both players simply fail to concede after that time even if they 

are rational. 

With that overview, let’s specify the model in detail. There are two players 1, 2. Player 

i has discount rate ri. If an agreement (x, 1 − x) is reached at time t, the payoffs (if the 
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players are rational) are (x1e
−r1t, x2e

−r2t). Each player i, in additional to his rational type, 

has an irrational type, whose behavior is fixed: this type always demands αi, and always 

accepts offers that give him at least αi and rejects lower offers. We assume α1 +α2 > 1. The 

probability that player i is irrational is zi. 

We consider bargaining protocols that are a generalization of the Rubinstein alternating-

offers protocol. A protocol is given by a function g : [0,∞) → {0, 1, 2, 3}. If g(t) = 0, then 

nothing happens at time t. If g(t) = 1 then player 1 makes an offer, and 2 immediately 

decides whether to accept or reject. If g(t) = 2 then the same happens with players 1 and 2 

reversed. If g(t) = 3 then both players simultaneously offer. If their offers are incompatible 

(the amount player 1 demands plus the amount player 2 demands exceeds 1) then both offers 

are rejected and the game continues; otherwise each player gets what he demands and the 

remaining surplus is split equally. 

The protocol is discrete, meaning that for every t, g−1({1, 2, 3})∩[0, t) is finite. A sequence 

of such protocols (gn) converges to the continuous limit if, for all ε > 0, there exists n∗ 

such that for all n > n∗, and for all t, {1, 2} ⊆ gn([t, t + ε]). For example, this is satisfied 

if gn is the Rubinstein alternating protocol with time increments of 1/n between offers. As 

Abreu and Gul show, each gn induces a game with a unique equilibrium outcome, and these 

equilibria converge to the unique equilibrium outcome of the continuous-time limit game. 

To make sense of this, we need a description of the continuous-time limit game. This game 

is a war of attrition: Each player initially demands αi. At any time, each player can concede 

or not. Thus, rational player i’s strategy is a probability distribution over times t ∈ [0,∞] 

at which to concede (given that j has not already conceded). (t = ∞ corresponds to never 

conceding.) When player i concedes at time t, the payoffs are (1 − αj)e
−rit for i and αje

−rjt 

for j. With probability zi, player i is the irrational type who never concedes. (If there is no 

concession, both players get payoff 0.) 

Without going through all the results in detail, we will sketch the relationship between 

these bargaining games and the reputation machinery we have developed, and will outline 

the analysis of the continuous-time game. 

Abreu and Gul show that in the discrete games, once player i has conceded, there must 

be agreement in equilibrium, and it is almost immediate. More precisely, they show (their 

Lemma 1): 
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Lemma 4. For any ε > 0, if n is sufficiently high, then after any history in gn where i has 

revealed rationality and j has not, in equilibrium play of the continuation game, i obtains at 

most 1− αj + ε and j obtains at least αj − ε. 

Proof. Consider the equilibrium continuation play starting from some history at which i has 

revealed rationality and j has not as of time t. Let t̂ be any time increment such that, with 

positive probability (in this continuation), the game still has not ended at time t + t̂. We 

will first show that all there is an upper bound on t̂. 

Let π be the probability that j does not reveal rationality in [t, t + t̂). Then i’s expected 

payoff as of time t satisfies vi ≤ 1− π + πe−ri t̂. We also have vi ≥ (1 − αj)zj
t where zj

t is the 

posterior that j is irrational as of time t. Combining, 

1− π + πe−ri t̂ ≥ (1 − αj)zj
t ≥ (1 − αj)zj. 

By taking t̂ → ∞ (for which π must be increasing) we can see that π is bounded above by 

some π̄ < 1, for large enough t̂. 

Now we apply the reasoning from Fudenberg and Levine (1989). Assume t̂ is large enough 

that j always has a chance to offer in any interval of length t̂. Each time an interval of length 

t̂ goes by without j conceding, the posterior probability that j is irrational increases by a 

factor of at least 1/(1 − π̄) > 1. The number of such increases that can occur is bounded 

above (by − ln(1 − π̄)). Thus there is an upper bound on the amount of time the game can 

continue, as claimed. 

Next, by a refinement of this argument, one shows that there exists β ∈ (0, 1) and ζ < 1 

with the following property: for any sufficiently small increment ε, given that i has revealed 

rationality and j has not and that the maximum length of time the game can continue in 

equilibrium if j continues not conceding is ε, then the probability that j will still not have 

revealed rationality within time βε (if he has the chance to do so) is at most ζ. (We omit 

the details of this argument.) 

So suppose we have a history at time t where i has revealed rationality, j has not, and 

the latest possible end of the game (if j continues not conceding) is t + ε. If j has had the 

chance to reveal rationality by time t + βε, which is (1 − β)ε before the end of the game, 

and has not done so, the posterior probability that j is irrational must increase by at least a 

factor 1/ζ > 1. Then, if j has had another chance to reveal rationality by the time (1− β)2ε 
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before the end of the game, and has not done so, the posterior probability of irrationality 

must increase by another factor of 1/ζ. And so forth. There can only be some number k 

of such increments before the posterior belief exceeds 1. Hence, ε must be small enough so 

that j cannot have a chance to reveal rationality in each of these first k subintervals. 

As n → ∞, because the offers in the games gn become increasingly frequent, the corre­

sponding upper bounds on ε go to 0. Thus, once i has revealed rationality, the maximum 

amount of time that it can take before the game ends if j continues to act irrationally goes 

to 0 as n → ∞. This means that by acting irrationally, j can guarantee himself a payoff 

arbitrarily close to αj for n sufficiently high. 

This leads (with a little further technical work) to the result that the continuous-game 

equilibrium is the limit of the discrete-game equilibria. 

So it remains just to analyze the continuous-time war of attrition. This is a well-known 

game, but with the twist that there are irrational types. In equilibrium, let Fi denote the 

cdf of times when i concedes — unconditional on i’s type; thus limt→∞ Fi(t) ≤ 1− zi because 

the irrational player never concedes. 

What are the rational player i’s payoffs from holding out until time t, then conceding? 

We get 

t−�	
1 

ui(t) = αi e−riy dFj(y) + (αi + 1 − αj)(Fj(t)− Fj(t
−)) + (1 − αj)(1 − Fj(t))e

−rit 

20 

(these terms correspond to i winning, both players conceding at the same time, and j winning, 

respectively). If t belongs to the support of Fi, then t ∈ argmax ui(t). 

Properties of the equilibrium are: 

•	 At most one player concedes at time 0: if both conceded at time 0 with positive 

probability, then each player would prefer to wait and concede later; the loss from 

waiting is negligible while the gain from winning is discrete. 

•	 There is no interval of time in which neither player concedes, but such that concessions 

do happen later with positive probability. There is also no interval during which 

only one player concedes with positive probability. Neither player’s concession time 
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distribution has a mass point on any positive time. (All of these are shown by similar 

tricks.) 

•	 After 0, each player concedes with a constant hazard rate. This hazard rate can be 

computed to be λi = ri(1− αi)/(αi +αj− 1). The reason is that i has to concede at a 

rate that makes j indifferent to conceding everywhere on his support. Writing down 

j’s local indifference condition, we see that this uniquely determines i’s instantaneous 

hazard rate of concession. So each player has a constant hazard rate, and we can 

work out from the indifference conditions what those hazard rates are. 

•	 Both players stop conceding at the same time, at which point they are both known to 

be irrational. This is because if player i continued to concede after j could no longer 

concede, then player i would prefer to deviate by conceding earlier (since he knew he 

was going to end up conceding anyway). So they stop conceding at the same time, 

and no agreement can happen after that time. If i still had positive probability of 

being rational at that point, then i would prefer to continue conceding rather than 

wait and get no agreement. 

The constant-hazard-rate finding tells us that Fi must have the form Fi(t) = 1 − cie
−λit 

for some constant ci. The constants c1, c2 can be computed from the fact that both players 

become known to be irrational at the same time (F−1(1 − z1) = F−1(1 − z2)) and that only 1 2 

one player can concede with positive probability at time 0 (so either c1 or c2 is 1). 

If i is the player who has positive probability of conceding at time 0, then i’s ex ante 

expected payoff in equilibrium must be 1 − αj (if he is rational). And j’s indifference to 

conceding at any positive time implies that his ex ante expected payoff is Fi(0)αj + (1 − 

Fi(0))(1 − αi). 

Thus we get a fairly detailed understanding of how bargaining games with frequent offers 

play out when irrational types are present; and a relationship between reputation and the 

war of attrition. 
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