Problem Set 1

1 Answers to the required problems

3.2

a) Take any three vectors z,y, z in R! and two real number o, € R.
Define the zero vector 6 = (0,..,0) € R'. To check that it is a vector space,
define the sum of two vectors as the vector of the sum element by element; and
the scalar multiplication as the multiplication of every element by an scalar.
It is trivial to check that this operations are closed in a finite dimesional
R'. Tt is not very difficult then to check conditions a to h of the definition
of a real vector space in page 43 of SLP by using the element by element
operations. For example for property ¢ we have that

alz+y) = alzr+y, ..o +y) = (axy + ayy, ..., ax; + o)

= oar+ oy

b) Straigthforward extension of part a)

c¢) Define the addition of two sequences as the element by element addi-
tion, and scalar multiplication as the multiplication of every element by the
same real number. Then proceed as in part a.

d) Take f,g : [a,0] - R and o € R. Let 6 (x) = 0. Define the addi-
tion of functions by (f +¢g) (z) = f(x) + ¢g(x), and scalar multiplication
by (af)(z) = af (x). A function f is continuous if x, — z implies that
f(xz,) — f(x). To see that f + ¢ is continuous, take a sequence z,, — z in
[a,b]. Then

lim (f+9g)(za) = lim f(z0) +9g(20) = f(2) +9(2) = (f +9) (@)

Tp—T

Now you can proceed as in part ¢, checking that the properties are defined
for every point of the function.



e) Take the vectors (0,1) and (1,0). Then (1,0)+ (0,1) is not in the unit
circle.

f) Choose a € (0,1). Then 1 € I but al ¢ I. Violates the definition of
vector space

g) Let f:[a,b] — Ry. Take a < 0, then af < 0, so does not belong to
the set of nonnegative functions.

3.3.
a) Take three different integers xz,y,and z. The non-negative property
holds trivially for the absolute value. Also

Finally

plr,y) = v —y| <|v—z|+]z -yl <p(z,2) +p(2,9)

b) First, p(z,y) > 0, and with equality only when x = y. It is also true
that p (z,y) = p (y, ).

Finally to show that p (z,y) < p(z, z) + p(z,y), notice that you have to
consider three cases, when z = y, z = x and when z ¢ {z,y}. For the first
two cases the triangle inequality holds with equality. For the last one it holds
with inequality p (z,y) < 2 for all x, y.

c) Take three functions x (t),y (t), and z (¢). The first two properties
of the metric are immediate from the definition of absolute value. Notice
also that z,y continuous in [a,b] implies that the functions are bounded.
The proposed metric is then real valued (not extended real). To prove the
triangle inequality let

p(r,2) = max|e(t) = z(t)] = max |z () —y () +y () - 2 (1)

t€la,b] tela,b]

< max {lz (&) —y (O] + |y () — 2 ()]}

< max |z (t) —y ()] + max [y (t) — z (¢)| = p(z,y) + p (v, 2)
t€la,b] te(a,b]

d) Very similar to c.

e) Similar to a.

f) The first two properties come from the absolute value plus f (0) = 0,
and f is strictly increasing (there is only one zero).
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To see the triangle inequality, let
p(xy)=fle—yl)=f(z—2+2-yl)
By strictlt increasing f we have
fle—z+z—y)) < f(ov—z[+]|z—yl)
And by concavity we have

flz—=zl+lz—y)) < f(x—2))+ f(z—yl) =p(z,2) +p(z,9)

3.4.
a) The norm is non-negative comes from the definition of the square root
of sum of squares. The second one, ||az|| = || ||z||, is implied by

laz* =) (az)* =Y af=a?|la|

To prove the triangle inequality we follow :

Hx+y!|2zz zi + ;) Zx +2szyl+2yz

By Cauchy-Schwartz we have that S 2, < [(322) (3 42)]"? so

St ru Y < Y [(Xa) (Xw)] v

2
= J|* + 2| [lyll +ly!1* = (=l +[ly]])

This implies that ||z + y|| < [|z]] + ||y]].
b),c) are very similar exploiting the absolute value properties.

d) The proposed norm is non-negative and is real valued (bounded se-
quences). The first property, notice that ||z|| = 0 only if for all k, z; = 0.
The second property we have ||az|| = sup, |axk| = |a|supy |zx| = |a] ||z||-
For the triangle inequality we have

|z +yl| = S%P(lxk"‘ykl) Ssukp(lxlirlykl) Ssgp|$k|+sukp|yk|
= 2] + [ly]|



e) Proceed as in part d.

f) Proceed as in part d.

3.5.

a) By the triangle inequality we know that

p(2,y) < p (@0, ) + p(Tn,Y)

given that x,, — x, and z,, — vy, the right hand side can be made as small
as wanted, implying that p (z,y) =0 and = = y.

b) If x,, — x, then for any €, we can find N such that p (z,,,z) < /2
for n; > N. The distance between to z,, and x,, with ny > N is then
p(xn,, Tny) < p(xn,, ) + p(2n,,z) = € for all ny,ny > N. (which is the
Cauchy definition).

c) Pick an ¢, then there exists an N such that for ny > N we have that
P (Tny, Tny) < &. Then p (2,,,0) < p(xn,,2n) +p(2n,0) =+ p(2n,0). Let
M = max,«n {p (z,,0)}. So we have then that for all n,

p (2,,0) <max{e + p(zn,0), M} < oo for all n

so the sequence is bounded.

d) The fact that z,, — x implies that every subsequence converges is easy.
To show that if every subsequence converges to x, then {x,} converges to x
we need to show that if z,, does not converge to x, then there is a subsequence
that does not converge to x. We can construct such a sequence by showing
that if {z,,} does not converge, for any €, and for any N; we can find an
k1 > N such that |z, — 2| > . Let Ny > ky and can find a ko such that
|z, — x| > € and so on , and construct a sequence of {z,} that is always
bounded away from x by .

3.6.

a) The metric in 3.3a is complete. Just choose € < 1, such that |z, — z,,| <
€ = 1. This implies that x,, = z,, = x. Where z is the limit of the sequence.
The 3.3b metric is similar.

The metric in 3.4a is complete. To show that, notice that if {z,} is a
Cauchy sequence under the norm, then each of the k;, elements of x,, are
also a Cauchy sequence. Given that the real line is complete, each sequence
of ky, elements converges to some z*. Define z = (xl, - xk) Compute the

distance from z,, to . This is p (z,,2)* = ¥ (2% — 7). Given that every



2t — 2, then p(x,,z)* — 0 which proves the limit result. The metric in
3.4b and 3.4c is similar.

For 3.4d. Let zF be the kth element of the n sequence. The fact that
a sequence of sequences is Cauchy (under the norm) implies that {xfl}
is Cauchy as well. This implies that {xﬁ} converges to some z¥. Let
r = {zt, 22, ...}. Tt is easy to see that p(z,,7) < p(Tpn,Tm) + p(Tm,x) <
p (@, ) + supy {p (2%, 2%)}. Given that 2% — 2% and {x,} is Cauchy, we
can make the left hand side of the inequality as small as possible, implying
that p (z,,z) — .

3.4.e. The proof was done in class for more general space.

The 3.3c is not complete. Just analyze the limit of for example z,, (t) =
1+ a,t as a, — 0 with a, > 0. This limit is just z, (¢) = 1, which is not
strictly increasing.

3.3e is not complete: rational sequences can converge to irrational num-
bers.

In 3.4.f, just think of the counter example for a = 0,0 = 1 and z,, (t) = ™.
In this case, p (zn, z,,) — 0, but the limit of z, (¢) is discountinuos at t = 0.

For the case of 3.3.c replacing with "non-decreasing” we can construct
the limit function point by point as before. Now, we have to show that the
limit function is non-decreasing, to do that suppose that is not, that the
Cauchy sequence of {f,} converges to f , but for some ¢’ > ¢ we have that
f(t)—f({)>e. Then

0 < e<f@O—fW)=FE) = fal®)+[fa@) = fo @)+ fu )= [ ()
< 2lf = Sull+ fa (8) = fu (2)

Given that f — f, , it has to be the case that f, (t) — f. (t') > ¢, a
contradiction of non-decreasing property of f,,.

b) Since S’ is closed in S, any convergent sequence in S’ converges in
S’. Given that any Cauchy sequence in S converges in S (by completeness),

implies that any Cauchy sequence in S’ converges, and hence converges in
S’

3.9. See that
p(T"vg,v) < p (T”'UO, T”H'Uo) +p (T"HUO, v) =
= p(T"vo, T o) + p (T vo, Tw)
< p (T, Tn+1U0) + Bp (T"vo, Tv)
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Rearranging term we get the inequility we need.

3.13.

a) Same as part b. with f (z) = .

b) Choose any z. Since 0 € I'(z), I' (z) is non-empty. Choose any
y € I'(z) and consider the sequence z,, — x. Let v = y/f(x) < 1 and
Yn =vf (). So y, € T (x,). Then by continuity of f we have that limy, =
vlim f (z,) = 7vf (x) =y. Hence f is Lh.p.c. at .

Given z, I' (x) is compact valued. Take arbitrary sequences x,, — x and
yn € I'(z,). Given that {z,} converges, this implies that {z,} is bounded.
This implies that {y,} is bounded as well. Because any bounded sequence
of real numbers has a convergent subsequence there exists a convergent sub-
sequence {y,, }. Let y =limy,,. Now we need to show that limy,, < f(z).
Suppose no, then for some N, we have that y,, — f (z) > ¢ for all nj, > N.
This implies then that y,, — f (z,,) > 2¢ for all n, > M > N. But this is
impossible, because y,, € I' (x,,).

¢) Proceed coordinate by coordinate as in b)

4.3)

a) Let v (zo) be finite. Since v satisfies the FE, as shown in the proof of
Theorem 4.3, for every o € X and every £ > 0 there exists an z, € I (x)
such that

€
v (@) < un () + 8" () + 5
Taking the limit as n — oo this gives
. € €
v(zo) <u () +lim sup 8" (z41) + 5 <u(x)+ 5
n—oo

Given that u (z,) < v* (z0) this gives us that

v (zg) < v* (x0) +€/2

and hence v (zg) < v* () for all z.
If v (xg) = —o0, the result is immediate. If v (x¢) = co the proof is along
the lines of the last part of theorem 4.3



b) By the argument in theorem 4.3 we have that

v(zo) > up(z)+ 5" (znn)

v(mo) > lim u, () + lim " (2),,) = u, () > u ()
For all z, € II(zo). This implies that

v(zo) > v* (m0) = sup u ()
z,€I(z0)

and together with the result in part a), we have that v = v*.

4.4)
a) Let K be a bound on F and M be a bound on f.Then

(Tf)(x) <K+ pM, forallz € X

Hence T': B(X) — B(X).
We show now that 7" is a contraction mapping.

Monotonicity :
Let f,g with f < g. Then

(Tf)(z) = ygl;t(g)F(x,y)Jrﬁf (y) = F(x,y") + Bf(y")
< F(z,y*) + By(y*) < (Tg) (x)

where y* € argmax F (z,y) + 8 (y)

Discounting: It is easy to show that T'(f + a) (x) = (T'f) (z) + Sa.

So, T is a contraction. There is a unique fixed point. I'(x) is non-empty
and finite-valued for all x implies that the optimal policy correspondence is
non-empty; and the maximum is always attained.

b) Similar to part (a)

c¢) Note that

wy () = (Th,wy) (x)
< max [F (x,y) + fw, (v)]
= (Tw,) (z) = (Thyyywn) (z)

So we have that w,, < Tw,. Monotonicity of T}, implies that T}, w, <
Th,, (Twy) = T w,. Iterating in this operator we have that

N
Tw, < Thn+ W,



But w,11 = limy_ Té\; W Hence Tw,, < w,1. And
wy <Twg <wy <Tw; < ...<Tw, <wv

By the contraction mapping,

[lwn = ol] < |[Twn1 =[] < Blwnr =]
< BlTwn—s — || < B2 [Jun— — ]|
< B [|wo = vl

and hence w,, — v as n — oo.



