Example 1. Consider the following simple function
hz)=—23+x

then clearly Z = 0 is the unique steady state of z;11 = h (z:). It is also globally
stable. This follows since —z3 < 0 for > 0 and —2® > 0 for < 0 so that
h(z) = —23+ 2 < x for z > 0 and h(z) = —23 + 2 > x for z < 0. Thus
x is rising if x is below 0 and falling if it is above 0. The convergence is then
monotonic.

However note that at Z = 0 we have that k' (0) = 1 so that A = 1 and the
eigenvalue is A = 1, thus || = 1.

One may oppose this example since we were requiring I — A to be non-
singular, here I — A = 0 so it is singular. The next example shows a case with
I — A non-singular.

Example 2. Take
h(z)=a—x

it is easy to see that £ = 0 is the unique steady state of x;11 = h(x;) for
€ [-1,1]. It is easy to see that the system is locally stable around Z (it is not
montonic though).
However note that at Z = 0 we have that k' (0) = —1 so that A = —1 and
the eigenvalue is A = —1, thus |A\| = 1. Note that in this case I — A = —2 is

singular.
Note: Clearly an eigenvalue with absolute value of 1 does not ensure local
convergence, just take h (x) = 23 + x or h (z) = —2® — 2 for example.

Remarks: Of course both of these policy functions can be generated as
optimal policy functions for some concave F' and some 0 < § < 1 using the
Boldrin-Montrucchio construction argument we went over in class. Thus these
point are of interest for us, they can arise in applications.

We conclude from these 2 examples that a one dimensional system may be
stable even if we don’t have |A| < 1, if we do have |A] = 1. More generally,
with more dimensions this point may affect the dimensionality of the subset of
the neighbourhood over which the system is stable. That is, even if we have
[A;| < 1 for only m eigenvalues, if we have some other eigenvalues with |\;| =1
we may [we can’t be sure, see the "note” above] have convergence starting from
xo belonging to a subset of greater dimension than m.



