1 Solutions Pset 3

1) Do some programing
3) Brock Mirman problem
a) Take V' = ay log k + azlog 0 4+ az. Then the max problem is

TV (k) = [ max In (Ak“0 — k') + BEg (a1 log k' + azlog 6 + as]
TV (k) = jmmax In (Ak“0 — k') + Baylog k' + BasFglog 6 + Bas

The FOC condition for this problem is (assuming interior),
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Given that V' (k) = aylog k + azlog 0 + a3, using V' (k) = TV (k) we have
that

ap = a(l+Pay)
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And a3 is given by

APay
— 1 1
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The proof that V' = V* is done in page 275,276 of SLP.

as =

) + Bas Eylog 01

b) The optimal rule for consumption is then

c(k,0) = Ak*0—K (k,0) =
1 (07

c(0) = AR

c(k,0) = (1—Ba)Ak0

So, we have that

and
dc a—1 o
o a(l— pa) AK0 — BAE™0

= [a(1 - Ba) — Bk] AK*10

There are two effects, depending on the level of k.

c)

You can do it ex-ante (before the value of 6 is realized), then

viw= | (Oﬁ%w (In (Ak*0 — k') + BV [k’]}> h(0) d6

1)
a) The main conflict is the change in preferences. They value consumption
paths differentely because they discount the future in different ways. In
particular, time-t self values consumption at time-t versus time-(¢ + 1)more
than any time-7 self with 7 < ¢, as long as § < 1. For § = 1 they all agree.
b) Every self maximizes its utility subject to what other types will do in

the future. So,
V (ko) = maxu (c) + oW (k1) (1)

Where 6W (k) is the discounted value for todays self of leaving &’ for the
future. So,

BZ(SU kt+z



Where ¢ (kiy;) is the optimal consumption rule that future selfs will
follow (we are assuming symmetry, and hence ¢* is time-independent). Now
take (?7) and do the following :

V(ko) = u(ch)+ oW (k1) = u(cp) +5525u (),
Viko) = (1= B)uleg) = Pulcp) +65251 ¢ (i)
Vi(ko) = (1= B)ule) = Wi(ko)

So, We can define W recursevly as

Wik) = V(k)=(1=pF)ulc (k)
Wik) = max{u(c)+ oW (f (k) =)} = (1 = B)u(c" (k)
The T operator is such that TW (k) = max. {u (c) + oW (f (k) —¢)} —
(1 —pB)u(c* (k) and we are looking for a fixed point of 7.
c) If p = 1, you can easily show that T is a contraction mapping (is
monotone and satisfies discounting). This means that there is a unique W

that solves the functional equation, and unique Markov equilibrium.
d) If B < 1 the T operator satisfies discounting :

TW(k)+a) = max{u(c)+d(W(f(k)—c)+a)} -1 —-pF)u(c (k)
= max{u(c) + W (f (k) — )} — (1 = B)u(c” (k) + da
= TW (k) + da

It does not however, necessarly satisfies monotonicity. Higher W, might
imply higher ¢* (k) for some capital level, and hence max.. {u (¢) + 6 (W (f (k) — ¢) + a)}—
(1 — B)u(c* (k)) might not increase.

e) If u=logc and f = Ak®, then we can do part 3.

TW (k) = max{u(c)+0W (f (k) —c)} = (1 =) u(c" (k)
= max {logc+ dalog (Ak" — c) + db} — (1 — B)u(c* (k))

(k) -
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So,
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A—(1-p)alogk

= log A+ adalogk +

1
1+ da
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+0b = ( B)Ogl—{—&z

= a[(1+6a)— (1 —B)]logk + b+ log
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So,
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And you can easily compute b.
The equilibrium consumption policy is then

1—ad

T aa—pF

Higher /3 implies higher consumption (the impatience has decreased).
f) For = 0 we have that

&= (1— ad®) Ak

So we need ¢ to be such that

]' e
1—a5(1—5)55_5
Now
0>6°>p6

given that g < 1.
A hyperbolic consumer looks like an exponential with an appropiate dis-
count rate!!.



Exercise 6.7

a. Actually, Assumption 4.9 is not needed for uniqueness of
the optimal capital sequence.

A4.3: K =[0,1] € R and the correspondence

I'(k)={y:y e K}
is clearly compact-valued and continuous.

A4.4: F(k,y) = (1—y)1=Dap9 i5 clearly bounded in K, and
it is also continuous. Also, 0 < 3 < 1.

A4.7: Clearly F' is continuously differentiable, then

Fy = fa(l — y)-0agda-1

Fy = —(L=0)a(l—y)t-0eighe
Fu, = 0a(l—y)(0a—1)3"0gse—2 g

Fy = (1-0)al[(1-0)a—1]1—y)t-Da=2be <
Fpy = —ba(1—0)a(l —y)d-0a1gbel g

and FypFyy — Fgfy > 0, hence F is strictly concave.

A4.8: Take two arbitrary pairs (k,y) and (k',¢y') and 0 < 7 <
1. Define k™ = 7k + (1 — )k, y™ = 7y + (1 — m)y’. Then, since
I'(k) = {y:0 <y <1} for all k it follows trivially that if y € I'(k)
and y' € (k') then y™ e T'(k™) =T'(k) =T'(K') = K.

A4.9: Define A = K x K as the graph of I". Hence F' is contin[]
uously differentiable because U and f are continuously differentiable.
The Euler equation is

(1 = 0)(1 = k)00 = Baf (1= kyyo) = R



b. Evaluating the Euler equation at ki1 = ki = k¥, we get
(1—-0)k" =p0(1—Fk"),

or

k* = __ B0
C1-604+p860
C. From the Euler equation, define

Wk, ki1, key2)

(1 = 0)(1 — kyyp) 1D 1 g0
—pBab (1 - kt+2)(1_0)a kfﬁfl
= 0.

Hence, expanding W around the steady state

Wk, kit kive) = WS K EY) + Wi (k) (ke — k%)
+Wa(k") (ki1 — k) + Wa(k™) (k2 — 7)),

where

Wi(k*) = a*(1—0)0(1 — k*)A=0at ()bt

Wa(k*) = —a(l—0)[(1—0)a—1](1 — k*)d-0a=2 fx)de
—B0a(fa — 1) (1 — k*)(1*9)a (k*)ga’2,

Wa(k*) = B0a(1—0) (1 — k*)I-DaL (gx)oa1,

Normalizing by W3(k*) and using the expression obtained for the
steady state capital we finally get

B (ke — k%) + B (ks1 — k%) + (k2 — k*) =0,
where ) 1-0 1 0
—al — —«
B = .
o(1—0) ' a0B
That both of the characteristic roots are real comes from the fact

that the return function satisfies Assumptions 4.3-4.4 and 4.7-4.9 and
it is twice differentiable, so the results obtained in Exercise 6.6 apply.




To see that A\; = (B\2) 1 it is straightforward from the fact that

((—B>+ BZ—4ﬁl> ((—B)—JW)

Ao 2 2

(B = (B~ 457
4

= gL

To see that A1 + Ao = — B, just notice that

(-B) + VB2 457" (-B) - VB2-4571

2 2

AL+ A =

Then, A; Ao > 0 and A; + Az < 0 implies that both roots are negative.

In order to have a locally stable steady state k* we need one of
the characteristic roots to be less than one in absolute value. Given
that both roots are negative, this implies that we need A; > —1, or

—B+ /B2 -4t > -2,

which after some straightforward manipulation implies

1+5

B
~ 7B

Substituting for B we get

1-0+08
200+ 1 —0)

or equivalently
(20 —1)(1 —0)
[1—2a(1-0)]0"

8>

d. To find that £* = 0.23, evaluate the equation for k* ob[]
tained in b. at the given parameter values. To see that k* is unl]
stable, evaluate A\; at the given parameter values. Notice also that
those parameter values do not satisfy the conditions derived in c.



e. Note that since F' is bounded, the two-cycle sequence satl]
isfies the transversality conditions

tlim B R (z,y)-x = 0 and
thm 6tF1($,y) y = 0,

for any two numbers z,y € [0,1], x # y. Hence, by Theorem 4.15, if
the two cycle (z,y) satisfies

Fy(x7y)+ﬂF:c(y7-T) =0 and

it is an optimal path.
Conversely, if (x,y) is optimal and the solution is interior, then
it satisfies

Fy(z,y) + Bv'(y) =0 and 2'(y) = Fu(y, @),
Fy(y,z)+ pBv'(z) =0 and v'(z) = Fy(z,y),

and hence it satisfies the Euler equations stated in the text.
Notice that the pair (z,y) defining the two-cycle should be rel!
stricted to the open interval (0, 1).

f. We have that

Fy(z,y) + BF,(y,x) = Ba&yae—l(l B x)a(l_g)
—Oz(l _ 9)l‘a0(1 _ y)a(l—a)—l’

and

Fy(y,2) + BFu(z,y) = Bafa®® (1 —y)*—7
—a(l o Q)yae(l - m)04(170)71
wrong numbers
The pair. > 0.13) the above set of equations equal to
zero, and from the result proved in part e. we already know this is
a necessary and sufficient condition for the pair to be a two-cycle.


Owner
wrong numbers

Owner

Owner
(0.29, 0.18)

Owner



g. Define
EY (kg ks k2 ki) = —a(l = 0)ky1®0(1 — kypg)*7071
+Ba0kYy " (1 — kiyg)* 00
= —a(l—0)z®(1 — y)*0-0-1
—I—ﬂOzHyo‘gfl(l — x)o‘(lfg)
=0
E? (kg kign, kego, kes) = —a(l = 0)k0 (1 — kyyp)*(—0-1
+Ba0kI T (1 — Kyyp)(179)
= —a(l— 01— x)a(l—@)—l
+Bafzo=1(1 — y)o1-0)
= 0.

Let EZJ be the derivative of EJ with respect to the i*" argument.
Then, the derivatives are

El = 0,

B} = —a20(1 —0)a0 (1 — y)o(-0-1

E}Y = —a(l -0zl —0) —1](1 —y)*(-0-2
+Bab(ad — 1)y*?2(1 — z)*(1=0),

Ei _ ﬁaeyaﬂ—l(l _ l,)a(l—@)—I’

E? = —a20(1—0)y*1(1 — )01

E2 = —a(1 -0yl —0)—1)(1 —z)*0-0-2

+Bab(af — 1)x*072(1 — y)*(1=0),
By = Bafu®®"t(1—y) 00,
E; = 0.
Using the fact that k;1o = k¢ in Ey, expand this system around
(0.29,0.18). Denoting by K deviations around the stationary point

K, we can express the linearized system as
. kiys N ki A
K = ~ = H ~ = HK
t/2+1 [ oo ] [ i t/2

where
A El 0 17'[ E} E!] evaluate this to
H= E2 E2 B2 | et stability


Owner
evaluate this to
get stability




