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1 Solutions Pset 3 

1) Do some programing 
3) Brock Mirman problem 
a) Take V = a1 log k + a2 log θ + a3. Then the max problem is 

TV  (k) =  max ln (Akαθ − k0) +  βEθ [a1 log k
0 + a2 log θ + a3]

0≤k0≤Akαθ 

TV  (k) =  max ln (Akαθ − k0) +  βa1 log k0 + βa2Eθ log θ + βa3 
0≤k0≤Akαθ 

The FOC condition for this problem is (assuming interior), 

1 βa1− = 0  
Akαθ − k0 

+ 
k0 

Which implies that 

k0 = 
βa1 

Akαθ 
1 +  βa1 

And Ã ! 

TV  (k) = ln 
1 

Akαθ + βa1 log 
βa1 

Akαθ 
1 +  βa1 1 +  βa1 

+βa2Eθ log θ + βa3 

= α (1 + βa1) log k + (1 +  βa1) log θ + " Ã ! # 
Aβa1 A 

+	 βa1 log + ln + βa2Eθ log θ + βa3
1 +  βa1 1 +  βa1 

Given that V (k) =  a1 log k + a2 log θ + a3, using V (k) =  TV  (k) we have 
that 

a1 = α (1 + βa1) 

a2 = 1 + βa1 Ã ! 
Aβa1 A 

a3 = βa1 log + ln + βa2Eθ log θ + βa3
1 +  βa1 1 +  βa1 

So, 
α 

a1 = > 0 
1 − βα 
1 

a2 = 
1 − βα 
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And a3 is given by " Ã ! 
1 Aβa1 A 

a3 = βa1 log + ln + βa2Eθ log θ 
1 − β 1 +  βa1 1 +  βa1 

The proof that V = V ∗ is done in page 275,276 of SLP. 

b) The optimal rule for consumption is then 

c (k, θ) =  Akαθ − k0 (k, θ) =  
1 

c (k, θ) =  Akαθ 
1 +  βa1 

c (k, θ) = (1 − βα) Akαθ 

So, we have that 
∂c 

< 0 
∂β 

and 

∂c 
= α (1 − βα) Akα−1θ − βAkαθ 

∂α 
= [α (1 − βα) − βk] Akα−1θ 

There are two effects, depending on the level of k. 
c) 
You can do it ex-ante (before the value of θ is realized), then 

V (k) =  
Z µ

0<k0≤Akα θ 
{ln (Akαθ − k0) +  βV [k0]}

¶ 

h (θ) dθmax 

4) 

#


a) The main conflict is the change in preferences. They value consumption 
paths differentely because they discount the future in different ways. In 
particular, time-t self values consumption at time-t versus time-(t + 1)more 
than any time-τ self with τ < t, as long as β <  1. For β = 1 they all agree. 
b) Every self maximizes its utility subject to what other types will do in 

the future. So, 
V (k0) = max u (c) +  δW (k1) (1) 

c 

Where δW (k) is the discounted value for todays self of leaving k0 for the 
future. So, X ∗ W (kt) =  β δi u (c (kt+i)) 

i 
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Where c ∗ (kt+i) is the optimal consumption rule that future selfs will 
∗follow (we are assuming symmetry, and hence c is time-independent). Now 

take (??) and do the following : X ∗ ∗ ∗ V (k0) =  u (c0) +  δW (k1) =  u (c0) +  βδ δi u (c (kt+i)) 
i X ∗ ∗ ∗ V (k0) − (1 − β) u (c0) =  βu (c0) +  βδ δi u (c (kt+i)) 

i 
∗ V (k0) − (1 − β) u (c0) =  W (k0) 

So, We can define W recursevly as 

∗ W (k) =  V (k) − (1 − β) u (c (k)) 
∗ W (k) = max {u (c) +  δW (f (k) − c)} − (1 − β) u (c (k)) 

c 

The T operator is such that TW  (k) = maxc {u (c) +  δW (f (k) − c)} − 
(1 − β) u (c ∗ (k)) and we are looking for a fixed point of T.  
c) If β = 1, you can easily show that T is a contraction mapping (is 

monotone and satisfies discounting). This means that there is a unique W 
that solves the functional equation, and unique Markov equilibrium. 
d) If β <  1 the T operator satisfies discounting : 

∗ T (W (k) +  a) =  max {u (c) +  δ (W (f (k) − c) +  a)} − (1 − β) u (c (k)) 
c 

∗ = max {u (c) +  δW (f (k) − c)} − (1 − β) u (c (k)) + δa 
c 

= TW  (k) +  δa 

It does not however, necessarly satisfies monotonicity. Higher W , might 
imply higher c ∗ (k) for some capital level, and hence maxc {u (c) +  δ (W (f (k) − c) +  a)}− 
(1 − β) u (c ∗ (k)) might not increase. 
e) If u = log c and f = Akα , then we can do part 3. 

∗ TW  (k) = max {u (c) +  δW (f (k) − c)} − (1 − β) u (c (k)) 
c 

= max {log c + δa log (Akα − c) +  δb} − (1 − β) u (c ∗ (k)) 
c 

∗ c (k) :  
1 δa 
= 

c Akα − c 
1 

c = Akα 

1 +  δa 
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So, 

TW  (k) =  log
1 +

1 
δa

Akα + δa log 
µ
Akα − 

1 +

1 
δa

Akα
¶ 

1 
+δb − (1 − β) log Akα 

1 +  δa 
1 δa 

= log A + α log k + δA log A + αδa log k + 
1 +  δa 1 +  δa 

1 
+δb − (1 − β) log A − (1 − β) α log k 

1 +  δa 
1 

= α [(1 + δa) − (1 − β)] log k + δb + log A 
1 +  δa 

δa 1 
+δA log A − (1 − β) log A 

1 +  δa 1 +  δa 

So, 
αβ 

a = 
1 − αδ 

And you can easily compute b. 
The equilibrium consumption policy is then 

1 − αδ 
c = Akα 

1 − αδ(1 − β) 

Higher β implies higher consumption (the impatience has decreased). 
f) For β = 0  we have that 

c̃ = (1 − αδe) Akα 

So we need δ̃ to be such that 

1 
βδ = δe 

1 − αδ(1 − β) 

Now 
δ > δe > βδ 

given that β <  1. 
A hyperbolic consumer looks like an exponential with an appropiate dis-

count rate!!. 
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a contradiction with β > 0.

c. The proof parallels the argument in b.

Exercise 6.7 

a. Actually, Assumption 4.9 is not needed for uniqueness of 
the optimal capital sequence. 

A4.3: K = [0, 1] ⊆ Rl and the correspondence 

Γ(k) =  {y : y ∈ K} 
is clearly compact-valued and continuous. 

A4.4: F (k, y) =  (1 − y)(1−θ)αkθα is clearly bounded in K, and 
it is also continuous. Also, 0 ≤ β ≤ 1. 

A4.7: Clearly F is continuously differentiable, then 

Fk = θα(1 − y)(1−θ)αkθα−1 

Fy = −(1 − θ)α(1 − y)(1−θ)α−1kθα 

Fkk = θα(1 − y) (θα − 1)(1−θ)α kθα−2 < 0 

Fyy = (1 − θ)α[(1 − θ) α − 1](1 − y)(1−θ)α−2kθα < 0 

Fxy = −θα (1 − θ) α(1 − y)(1−θ)α−1kθα−1 < 0, 

and FkkFyy − F 2 
xy > 0, hence F is strictly concave. 

A4.8: Take two arbitrary pairs (k, y) and (k0, y0) and 0 < π < 
1. Define kπ = πk + (1 − π)k0, yπ = πy + (1 − π)y0 . Then, since 
Γ(k) =  {y : 0  ≤ y ≤ 1} for all k it follows trivially that if y ∈ Γ(k) 
and y0 ∈ Γ(k0) then yπ ∈ Γ(kπ ) =  Γ(k) =  Γ(k0) =  K. 

A4.9: Define A = K ×K as the graph of Γ. Hence F is contin­
uously differentiable because U and f are continuously differentiable. 
The Euler equation is 

α(1 − θ)(1 − kt+1)
(1−θ)α−1kt 

θα = βαθ (1 − kt+2)
(1−θ)α kθα−1 .t+1 
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b. Evaluating the Euler equation at kt+1 = kt = k∗ , we get 

∗ ∗ (1 − θ)k = βθ (1 − k ) , 

or 
∗ βθ 
k	 = . 

1 − θ + βθ 

c. From the Euler equation, define 

W (kt, kt+1, kt+2) 

≡ α(1 − θ)(1 − kt+1)
(1−θ)α−1kt 

θα 

−βαθ (1 − kt+2)
(1−θ)α kθα−1 

t+1 

= 0. 

Hence, expanding W around the steady state 

∗ ∗ ∗ ∗ ∗ W (kt, kt+1, kt+2) =  W (k , k  , k  ) +  W1(k ) (kt − k ) 
∗ ∗ ∗ ∗ +W2(k ) (kt+1 − k ) +  W3(k ) (kt+2 − k ) , 

where 

W1(k ∗ ) =  α2(1 − θ)θ(1 − k ∗ )(1−θ)α−1 (k ∗ )θα−1 , 

W2(k ∗ ) =  −α(1 − θ) [(1 − θ) α − 1] (1 − k ∗ )(1−θ)α−2 (k ∗ )θα 

−βθα(θα − 1) (1 − k ∗ )(1−θ)α (k ∗ )θα−2 , 

W3(k ∗ ) =  βθα2(1 − θ) (1 − k ∗ )(1−θ)α−1 (k ∗ )θα−1 . 

Normalizing by W3(k
∗) and using the expression obtained for the 

steady state capital we finally get 

∗ ∗ ∗ β−1 (kt − k ) +  B (kt+1 − k ) + (kt+2 − k ) = 0, 

where 
1 − α(1 − θ) 1 − αθ 

B = + . 
α(1 − θ) αθβ 

That both of the characteristic roots are real comes from the fact 
that the return function satisfies Assumptions 4.3-4.4 and 4.7-4.9 and 
it is twice differentiable, so the results obtained in Exercise 6.6 apply. 



94 6 / Deterministic Dynamics

To see that λ1 = (βλ2)
−1 it is straightforward from the fact that Ã 

λ1λ2 =
(−B) +  

p
B2 − 4β−1 

!Ã  
(−B) − 

p
B2 − 4β−1 

! 

2 2 

(−B)2 − (B2 − 4β−1) 
= 

4 
β−1 = . 

To see that λ1 + λ2 = −B, just notice that 

λ1 + λ2 =
(−B) +  

p
B2 − 4β−1 

+
(−B) − 

p
B2 − 4β−1 

= −B. 
2 2 

Then, λ1λ2 > 0 and λ1 + λ2 < 0 implies that both roots are negative. 
In order to have a locally stable steady state k∗ we need one of 

the characteristic roots to be less than one in absolute value. Given 
that both roots are negative, this implies that we need λ1 > −1, or 

−B + 
q
B2 − 4β−1 > −2, 

which after some straightforward manipulation implies 

1 +  β 
B >  . 

β 

Substituting for B we get 

1 − θ + θβ 
> α,

2θ(1 + β)(1 − θ) 

or equivalently 

β > 
(2θα − 1)(1 − θ) 

. 
[1 − 2α(1 − θ)]θ 

d. To find that k∗ = 0.23, evaluate the equation for k∗ ob­
tained in b. at the given parameter values. To see that k∗ is un­
stable, evaluate λ1 at the given parameter values. Notice also that 
those parameter values do not satisfy the conditions derived in c. 
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e. Note that since F is bounded, the two-cycle sequence sat­
isfies the transversality conditions 

lim βtF1(x, y) · x = 0  and 
t→∞ 

lim βtF1(x, y) · y = 0, 
t→∞ 

for any two numbers x, y ∈ [0, 1], x 6= y. Hence, by Theorem 4.15, if 
the two cycle (x, y) satisfies 

Fy (x, y) +  βFx(y, x) = 0 and 

Fy (y, x) +  βFx(x, y) = 0, 

it is an optimal path. 
Conversely, if (x, y) is optimal and the solution is interior, then 

it satisfies 

Fy (x, y) +  βυ0(y) = 0 and υ0(y) =  Fx(y, x), 
Fy (y, x) +  βυ0(x) = 0  and υ0(x) =  Fx(x, y), 

and hence it satisfies the Euler equations stated in the text. 
Notice that the pair (x, y) defining the two-cycle should be re­

stricted to the open interval (0, 1). 

f. We have that 

Fy (x, y) +  βFx(y, x) = 	βαθy αθ−1(1 − x)α(1−θ) 

−α(1 − θ)x αθ (1 − y)α(1−θ)−1 , 

and 

Fy (y, x) +  βFx(x, y) = 	βαθx αθ−1(1 − y)α(1−θ) 

−α(1 − θ)y αθ (1 − x)α(1−θ)−1 

The pair ( 29, 0.18) the above set of equations equal to 
zero, and from the result proved in part e. we already know this is 
a necessary and sufficient condition for the pair to be a two-cycle. 

Owner
wrong numbers

Owner

Owner
(0.29, 0.18)

Owner
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g. Define 

E1 (kt, kt+1, kt+2, kt+3) ≡ −α(1 − θ)kt+1 
αθ (1 − kt+2)

α(1−θ)−1 

+βαθkαθ−1(1 − kt+3)α(1−θ) t+2 

= −α(1 − θ)x αθ (1 − y)α(1−θ)−1 

+βαθy αθ−1(1 − x)α(1−θ) 

= 0  

E2 (kt, kt+1, kt+2, kt+3) ≡ −α(1 − θ)kt αθ (1 − kt+1)α(1−θ)−1 

+βαθkαθ−1(1 − kt+2)
α(1−θ) 

t+1 

= −α(1 − θ)y αθ (1 − x)α(1−θ)−1 

+βαθx αθ−1(1 − y)α(1−θ) 

= 0. 

Let Ei
j be the derivative of Ej with respect to the ith argument. 

Then, the derivatives are 

E1 
1 

E1 
2 

E1 
3 

E1 
4 

E2 
1 

E2 
2 

E2 
3 

E2 
4 

= 0,


= −α2θ(1 − θ)x αθ−1(1 − y)α(1−θ)−1 ,


= −α(1 − θ)x αθ [α(1 − θ) − 1](1 − y)α(1−θ)−2


+βαθ(αθ − 1)y αθ−2(1 − x)α(1−θ), 
= βαθy αθ−1(1 − x)α(1−θ)−1 , 

= −α2θ(1 − θ)y αθ−1(1 − x)α(1−θ)−1 , 

= −α(1 − θ)y αθ [α(1 − θ) − 1](1 − x)α(1−θ)−2 

+βαθ(αθ − 1)x αθ−2(1 − y)α(1−θ), 
= βαθx αθ−1(1 − y)α(1−θ)−1 , 

= 0. 

Using the fact that kt+2 = kt in E1, expand this system around 
ˆ(0.29,0.18). Denoting by K deviations around the stationary point 

K̄, we can express the linearized system as · · 
ˆ ˆ 

ˆ ˆ ˆKt/2+1 = 
kt+3 

¸ 

= H
kt+1 

¸ 

= H ˆ 
kt 

Kt/2ˆ ˆkt+2 

where · 
E1 0 

¸−1 · 
E1 E1 

¸ 

.H = 4 2 1ˆ 
0 E2 E2 E2 

3 2 1 

Owner
evaluate this to
get stability




