14.128. Problem Set #3

1 Neoclassical Growth: Linear and Non-Linear
Speed of Convergence

Consider the neoclassical growth model with u (¢) =77/ (1 —0) G (k,1) =
k“ and depreciation rate 9.

(a) Using the linearized dynamics compute several tables showing the
speed of convergence as functions of the parameters a and o (for 5 = .97
and § = .1). Use as a measure for the speed of convergence the half-life of
the difference between capital and the steady state level of capital capital,
le. b — kg, T~hat is, find tlrle time t for which k; — kys = % (ko — kss) , denote
this value by ¢, in general ¢ will not be an integer. In the linearized model
this number will not depend on kg. [Hint: to do this quickly, create two
vectors with the parameter values for ¢ and « that you want to use, then
write a double loop into your code that goes over the different entries of these
vectors; store the half-lifes into a matrix]

Now we will compute the actual non-linear dynamics and define a speed
of convergence for it starting from some k¢ [with the non-linear dynamics our
measure may depend on ko).

Proceed as follows: find the actual non-linear policy function ki1 = g (k)
by value function iteration numerically. Next compute a sequence for capital
using ¢ starting from ky. Using this sequence find the smallest value of ¢ such
that |k — kss| < % ko — k|, denote this value by £, and define:

5\: ((ki_k88)>?
(k() - kss)
Next using this ) compute the half life of a system x;,; = Az;. This half-life
is our summary statistic for the speed of convergence starting from ky. In
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%kzss [note that ks and thus ko depends on the

your calculations use ky =
parameters].

(b) Perform this calculation for an interesting subset of the parameter
values for which you computed the linear dynamics speed of convergence.

Compare your results.

2 Two-Period Cycles

Do exercise 6.7 of SLP, page 157 (all parts: a,b,c,d, e and f).

3 Brock-Mirman

Consider the Brock-Mirman problem:

V* (ko,0p) = max EOZﬁtln )

{ct;ktr1}io,

subject to ¢; + kiy1 < AkPO;, ko given, and where {6;} is an i.i.d. sequence
with In (6;) distributed with density A (0) with bounded support in [0, 0]
(A>0,1>a>0).

The associated Bellman equation for this problem is:

Oy

V (k,0) = max {ln (Ak®0 — k') + B

0<k'<Ake0

V (K, 0)h(0) dh} )
Or

(a) Verify that V' (k,0) = a; log k + a2 log 6 + as solves the Bellman equa-
tion and compute a1, a; and a3 as functions of the parameters of the problem.
Is this function the value function of the sequence problem, i.e. is V* = V7

(b) What is the optimal policy rule for consumption? How does the
optimal consumption rule change with § and a?

(c) Show that there is an alternative recursive formulation of this problem
with a single state variable. In other words, produce a single state variable
that is a sufficient statistic for the dynamic problem at any date ¢ together
with a functional equation that represents the problem using such a state
variable. In such a formulation, can the state for ¢ + 1 be chosen determin-
istically at ¢?



4 A Glimpse at Hyperbolic Discounting

An individual lives forever from ¢ = 0,1,...,00. Think of the individual
as actually consisting of different personalities, one for each period. Each
personality is a distinct agent (time-t agent) with a distinct utility function
and constraint set. Personality ¢ has the following preferences

)+ 5 ulcry)
j=1

where w (-) is bounded twice differentiable, increasing and strictly concave
function of consumption; 3 € (0,1] and 6 € (0,1). An individual with these
preferences is called a hyperbolic discounter.

At each t, let there be a savings technology described by

krp1 4+ ¢ < f(ke)

where f is a standard production function satisfying Inada conditions. There
is no other source of income.

Assume that time—t personality decides on consumption at time t only,
and this consumption decision is function of k; (i.e. ¢ (k;)) only. Assume that
every time-t personality uses the same consumption function. Let

BZM ¢ (kes5))

and where {ktﬂ};io is defined recursively by ki1 = f (ki) — ¢ (kity),
with k; given.

A Markov equilibrium is then a function w that is a fixed point of the
following functional operator T": to compute TW for any W we first find

c* (k) € argmax {u (c) + W (f (k) —¢)}
and then define

TW(K) = max {u(e)+0W (F (k) = o)} = (L= B)u (k)

For any fixed point w = Tw we may refer to the associated ¢* (k) as the
equilibrium Markov strategy. (To avoid complications, assume that the
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set argmax {u (c) + 0W (f (k) — ¢)} is a singleton. We could modify things
slightly to deal with the case where it isn’t).

(a) What is the main conflict between different personalities? For which
values of 3 do they all agree about the optimal plan?

(b) Interpret the operator T'.

(c) If 5 =1, is T a contraction mapping [Hint: use Blackwell sufficient
conditions for a contraction]? How many (Markov) equilibria exist?

(d) For g < 1, can you say that 7" is a contraction mapping using Black-
well conditions? Can you say there is a unique (Markov) equilibrium? What
is different between (c) and (d)?

(e) Suppose now that u(c) = loge and f (k) = Ak* with a € (0,1).
Verify that one possible fixed point for 7" is of the form W (k) = alogk + b.
Determine a and b. What is the equilibrium consumption policy? How does
it changes with 37

(f) (Observational Equivalence) Suppose there is another individual, call
him an exponential consumer, with a $° =1 and u° (¢) = In (¢). Can you find
a discount rate 0¢ for this exponential consumer such that with f (k) = Ak,
the optimal consumption policy for this exponential consumer is the same
as the equilibrium policy described in (e) for a hyperbolic consumer, with a
given § < 1 and 07 What does this tell us about the ability to empirically
separate a hyperbolic discounter from an exponential consumer?



