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Outline Today’s Lecture

e study Functional Equation (Bellman equation) with bounded and con-

tinuous F’

e tools: contraction mapping and theorem of the maximum
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Bellman Equation as a Fixed Point

e define operator

T(f)(z) = max {F(x,y)+ 6f(y)}

yel'(z)

e V solution of BE <= V fixed point of T [i.e. TV = V]

Bounded Returns:

e if |F|| < B and F and I' are continuous: 1" maps continuous bounded
functions into continuous bounded functions

e bounded returns = T' is a Contraction Mapping =- unique fixed point

e many other bonuses
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Our Favorite Metric Space

S = {f : X — R, fis continuous, and ||f|| = sup |f ()] < oo}
rzeX

with

p(fr9)=If—gll=sup|f(z)—g(z)

zeX

Definition. A linear space S is complete if any Cauchy sequence converges.
For a definition of a Cauchy sequence and examples of complete metric spaces
see SLP.
Theorem. The set of bounded and continuous functions is Complete. See
SLP.
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Contraction Mapping

Definition. Let (.5, p) be a metric space. Let T': S — S be an operator. T is
a contraction with modulus g € (0,1)

p(Tz,Ty) < Bp(z,y)

for any x,y in S.
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Contraction Mapping Theorem

Theorem (CMThm). If T is a contraction in (S, p) with modulus (3, then (i)
there is a unique fixed point s* € S,

s*=1Ts"
and (ii) iterations of T' converge to the fixed point
p(T"s0,5") < 5"p(s0,5")

for any so € S, where T (s) =T (T (s)).
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CMThm - Proof

for (i) 1st step: construct fixed point s*
take any sg € S define {s,,} by s,4+1 = T's, then

p(s2,51) = p(T's1,Ts0) < Bp(s1,50)

generalizing p (sp11,5,) < B8"p(s1,80) then, for m > n

P (Smssn) < p(Sm,Sm—1) + P (Sm-1,5m—2) + ... + p(Sn+1, Sn)
< 5m_1 +6m_2++6n] /0(81750)
< BU[BMTTT AT TR 4 L+ 1] p(s1, 50)
S 15_6P(51750>

thus {s,} is cauchy. hence s,, — s*
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2nd step: show s* = T's*

p(Ts*,s") p(Ts*, sp)+ p(s*, spn)

Bp (3*7 Sn—l) +p (3*7 Sn) — 0

IA A

3nd step: s* is unique. T's7 = s7 and s5 =1T's3
0<a=p(s1,83) = p(Tsy,Tsy) < fp(s1,52) = Pa

only possible if a =0 = s] = s3.
Finally, as for (ii):

p(T"s0,8") = p(T"s0,Ts*) < Bp (IT™ 's9,8") <+ < B"p(s0,5")
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Corollary. Let S be a complete metric space, let S’ C S and S’ close. Let
T be a contraction on S and let s* = T's*. Assume that

T(SHYcS', ie ifses, thenT(s') el
then s* € S’. Moreover, if S ¢ S’ and
T(SYcS”, ie ifs eSS thenT(s')eS”

then s* € S”.
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Blackwell’s sufficient conditions.
Let S be the space of bounded functions on X, and [|-|| be given by the sup
norm. Let T': S — S. Assume that (i) 7" is monotone, that is,

Tf(x) <Tg(z)

for any x € X and g, f such that f(z) > g(x) for all x € X, and (ii) T
discounts, that is, there is a 8 € (0,1) such that for any a € Ry,

T(f+a)(x)<Tf(x)+ap

for all x € X. Then 1" is a contraction.
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Proof. By definition
f=9+f—g
and using the definition of |-||,

fx) <g@)+I|f -4l

then by monotonicity i)

Tf<T(g+|f—gl)

and by discounting ii) setting a = ||f — g||

Tf<T(g)+8I|f—gl

Reversing the roles of f and g :

Tg<T(f)+6 IIf -4l

= |[Tf=Tg|| <BIf -9
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Bellman equation application

() (x) = max {F (2.9) + v (»))

Assume that F' is bounded and continuous and that I' is continuous and has
compact range.

Theorem. T maps the set of continuous and bounded functions S into itself.
Moreover 1" is a contraction.
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Proof. That 1" maps the set of continuos and bounded follow from the
Theorem of Maximum (we do this next)

That 1T is a contraction follows since 1’ satisfies the Blackwell sufficient con-
ditions.

T satisfies the Blackwell sufficient conditions. For monotonicity, notice that
for f > v

T (z) max {F (z,y) + Bv (y)}

yel'(x)

F(x,g9(x))+ Bv(g(x))
{F(z,9())+8f(g9())}

max, {F(z,y) +8f(y)} =Tf (x)

yel'(x

IA A

A similar argument follows for discounting: for a > 0
T(v+a)(2) = max {F(z,y) +5(v () +0)

= ax {F(z,y) +Bv(y)} + Ba =T (v)(z)+ Ba.

Introduction to Dynamic Optimization Nr. 13




Theorem of the Maximum

e Wwant /71 to[maplcontinuousfunctionlintolcontinuousfunctions

(Tw) (z) = nax, {F (z,y) + Pv(y)}

e want to learn about optimal policy of RHS of Bellman

G (z) = arg e, {F (z,y) + Bv (y)}

e First, continuity concepts for correspondences
e ... then, a few example maximizations

e ... finally, Theorem of the Maximum
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Continuity Notions for Correspondences

assume ' is non-empty and compact valued (the set I' (x) is non empty and
compact for all z € X)

Upper Hemi Continuity (u.h.c.) at x: for any pair of sequences {x,,} and
{yn} with x,, — = and x,, € I' (y,) there exists a subsequence of {y,} that
converges to a point y € I' (x) .

Lower Hemi Continuity (l.h.c.) at x: for any sequence {z,} with z,, — x
and for every y € I' (x) there exists a sequence {y,} with z,, € T" (y,) such
that y,, — v.

Continuous at x: if I' is both upper and lower hemi continuous at x
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Max Examples

h(x) = ma x,
(x) yeré)f (z,y)
G(z) = arg max f(z,y)
yel'(z)

ex I: f(z,y) =2zy; X =[-1,1]; ' (z) = X.

{-1} z<0
G(z) = { [-1,1] 2=0
{1} x>0

hiz) = |zl

continued...
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jdas
continued...


ex2: fi(w,y) = zy? XI= [-1,1]5T () = X

{0} =<0
Gllr) = { [—1,1] x=0

{-1,1} x>0
h(x) = max{0,x}
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Theorem of the Maximum

Define:
h(x) = max f(x,
@ = max f(ny)
G(z) = arg max f(z,y)
yel'(z)

= {yel(z): h(z)=f(z,9)}

Theorem. (Berge) Let X C Rland Y C R™. Let f : X xY — R be
continuous and I' : X — Y be compact-valued and continuous. Then h :
X — R is continuous and G : X — Y is non-empty, compact valued, and
u.h.c.
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IIm max — max lim

Theorem. Suppose {f, (z,y)} and f (z,y) are concave in y and f, — f in
the sup-norm (uniformly). Define

gn (x) = arg max f,(z,y)
yel'(x)

g(zr) = arg max f(z,y)
yel(z)

then g, (z) — g (x) for all  (pointwise convergence); if X is compact then
the convergence is uniform.
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Uses of Corollary of CMThm

Monotonicity of v*
Theorem. Assume that F'(-,y) is increasing, that I is increasing, i.e.

['(z) cT(2)

for x < z’. Then, the unique fixed point v* satisfying v* = Tw™* is increasing.
If F'(-,y) is strictly increasing, so is v*.
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Proof

By the corollary of the CMThm, it suffices to show T'f is increasing if f is
increasing. Let z < a’:

Tf (z) max {F (z,y) + Bf (y)}

yel'(x)
= F(z,y")+B8f(y") for some y* € I' ()
< F@,y")+8f(y)

since y* € I'(x) C T (2')

< max {F(z,y)+ 5/ ()} =T ()

If F'(-,y) is strictly increasing

F(z,y")+Bf (") < F(2',y")+B8f ().
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Concavity (or strict) concavity of v*

Theorem. Assume that X is convex, I' is concave, i.e. y € I'(z), 3 €
['(z") implies that

y9Eey’+(1—(9)y€F(Qa:’+(1—9)a:)EF(:L'Q)

for any x,2’ € X and 6 € (0,1). Finally assume that F' is concave in (x,y).
Then, the fixed point v* satisfying v* = Tv* is concave in . Moreover, if
F (-,y) is strictly concave, so is v*.
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Differentiability

can't use same strategy: space of differentiable functions is not closed
many envelope theorems

Formula: if h (x) is differentiable and y is interior then

W (z) = fu(z,y)
right value... but is h differentiable?

one answer (Demand Theory) relies on f.o.c. and assuming twice differ-
entiability of f

won't work for us since f = F(x,y) + 8V (y) and we don't even know
if f is once differentiable! — going in circles
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Benveniste and Sheinkman

First a Lemma...
Lemma. Suppose v (x) is concave and that there exists w (z) such that

w(x) < wv(x) and v (xg) = w(xg) in some neighborhood D of xy and w is
differentiable at g (w' (zg) exists) then v is differentiable at x¢ and v’ (zg) =

/
w’ (xg).
Proof. Since v is concave it has at least one subgradient p at z :

w(z) —w(z0) < (x) —v(T0) <p- (2~ 20)

Thus a subgradient of v is also a subgradient of w. But w has a unique
subgradient equal to w’ (xq).[
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Benveniste and Sheinkman

Now a Theorem
Theorem. Suppose F' is strictly concave and I is convex. If zg € int (X)
and g (xg) € int (I' (zg)) then the fixed point of T', V, is differentiable at x

and
Vi(z) = Fy (2,9 ()

Proof. We know V is concave. Since x( € intl(IX)Iand gl(kg) € intl(T(ixg))
then g (zg) € intl(T'[(x))for x € Dlalneighborhood(of zq then

W (z) =F(xz,g(x0)) + BV (g9 (x0))

and(then Wi(z) < Vi(z)land Wi{xg) =V (x¢) and W’ (zg) = F (z0, 9 (x0))
so[thelresultfollows[from[thellemma.[]
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