Recursive Methods

Introduction to Dynamic Optimization Nr.




Outline Today’s Lecture

finish off: theorem of the maximum

Bellman equation with bounded and continuous F’
differentiability of value function

application: neoclassical growth model

homogenous and unbounded returns, more applications
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Our Favorite Metric Space

— {f : X — R, f is continuous, and ||f|| = sup f(z)] < oo}

with
p(f,9)=1IIf—gl = Sup |f (z) — g (z)]
(Tv) (z) = max {F (x,y)+ Bv (y)}

yel'(x)

Assume that F' is bounded and continuous and that I' is continuous and has
compact range.

Theorem 4.6. T maps the set of continuous and bounded functions S into
itself. Moreover T’ is a contraction.
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Proof. That 1" maps the set of continuous and bounhded follow from the
Theorem of Maximum (we do this next)

That 7' is a contraction — Blackwell sufficient conditions

—monotonicity, notice that for f > v

Jmax. {F(x,y) + v (y)}

F(x,g9(x))+ Bv(g(x))
{F(z,9(y))+8f(g9())}
max, {(F(z,y) +B8f ()} =Tf (x)

yel'(x

Tv (x)

IA A

—discounting: for a > 0
T(v+a)(2) = max {F(z,y) +5(v ) +0)

= ax {F (z,y) + Bv(y)} + Ba=T(v)(z) + Ba.
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Theorem of the Maximum

want/I" to map cohtinuous fluhction into continuous fuhctions

(Tw) (z) = nax, {F (z,y) + Bv(y)}

want to learn about optimal policy of RHS of Bellman

G (z) = arg max {F (z,y) + Bv (y)}

First, continuity concepts for correspondences
.. then, a few example maximizations

finally, Theorem of the Maximum
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Continuity Notions for Correspondences

assume ' is non-empty and compact valued (the set I' (x) is non empty and
compact for all z € X)

Upper Hemi Continuity (u.h.c.) at x: for any pair of sequences {x,,} and
{yn} with x,, — = and x,, € I' (y,) there exists a subsequence of {y,} that
converges to a point y € I' (x) .

Lower Hemi Continuity (l.h.c.) at x: for any sequence {z,} with z,, — x
and for every y € I' (x) there exists a sequence {y,} with z,, € I" (y,) such
that y,, — v.

Continuous at x: if I' is both upper and lower hemi continuous at x
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Max Examples

h(x) = ma x,
(x) yeré)f (z,y)
G(z) = arg max f(z,y)
yel'(z)

ex I: f(z,y) =zy; X =[-1,1]; ' (z) = X.

{-1} z<0
G(z) = {[1,1] z =0

{1} x>0
hiz) = |z

continued...
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Theorem of the Maximum

Define:
h(x) = max f(x,
@ = max f(ny)
G(z) = arg max f(z,y)
yel'(z)

= {yel(z): h(z)=f(z,9)}

Theorem 3.6. (Berge) Let X C Rland Y C R™. Let f: X xY — R
be continuous and I' : X — Y be compact-valued and continuous. Then
h : X — R is continuous and G : X — Y is non-empty, compact valued, and
u.h.c.
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IIim max — max lim

Theorem 3.8. Suppose {f, (z,y)} and f (x,y) are concave in y that and T
Is convex and compact valued.
Then if f,, — f in the sup-norm (uniformly). Define

gn () = arg max f, (z,y)
yel'(z)

g(x) = arg max f(z,y)
yel'(z)

then g, () — g (x) for all x (pointwise convergence); if X is compact then
the convergence is uniform.
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Uses of Corollary of CMThm

Monotonicity of v*
Theorem 4.7. Assume that F' (-, y) is increasing, that I' is increasing, i.e.

['(z) cT(2)

for x < z’. Then, the unique fixed point v* satisfying v* = Tw™* is increasing.
If F'(-,y) is strictly increasing, so is v*.
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Proof

By the corollary of the CMThm, it suffices to show T'f is increasing if f is
increasing. Let z < a’:

Tf (z) max {F (z,y) + Bf (y)}

yel'(x)
= F(z,y")+B8f(y") for some y* € I' ()
< F@,y")+8f(y)

since y* € I'(x) C T (2')

< max {F(z,y)+ 5/ ()} =T ()

If F'(-,y) is strictly increasing

F(z,y")+Bf (") < F(2',y")+B8f ().
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Concavity (or strict) concavity of v*

Theorem 4.8. Assume that X is convex, I' is concave, i.e. y € I'(x), y' €
['(z") implies that

y9EHy’—|—(1—(9)y6F(Qa:’+(1—9)a:)EF(:L'Q)

for any x,2’ € X and 6 € (0,1). Finally assume that F' is concave in (x,y).
Then, the fixed point v* satisfying v* = Tv* is concave in . Moreover, if
F (-,y) is strictly concave, so is v*.
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convergence of policy functions

e with concavity of F' and convexity of I' — optimal policy correspondence
G(x) is actually a continuous function g(z)

e since v, — v uniformly = g, — ¢
(Theorem 4.8)

e we can use this to derive comparative statics
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Differentiability

can’'t use same strategy as with monotonicty or concavity:

space of differentiable functions is not closed

many envelope theorems, imply differentiability of A

h(z) = [ f(z,y)

always if formula: if h(x) is differentiable and there exists a y* €

int (I' (x)) then
W (x) = fo (z,y)

...but is h differentiable?

continued...
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e one approach (elg. Demand Theory) rélies onl smoothness of I" and f
(twice differentiability) — use f.o.c. and implicit function theorem

e won'tilwork for uslsince f (x,y) = F(x,y) + 8V (y) — don't khow if |f

Is once differentiable yet! — going in circles...
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Benveniste and Sheinkman

First a Lemma...
Lemma. Suppose v (x) is concave and that there exists w (z) such that

w(x) < wv(x) and v (xg) = w(xg) in some neighborhood D of xy and w is
differentiable at g (w’ (zg) exists) then v is differentiable at x¢ and v (zg) =

w’ (xo).
Proof. Since v is concave it]has at least ohe subgradient p at xzq:

w(z) —w(zo) < (2) —v(T0) <p- (2 —20)

Thus a subgradient of v is also a subgradient of w. But w has a unique
subgradient equal to w’ (xg) .
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Benveniste and Sheinkman

Now a Theorem
Theorem. Suppose F' is strictly concave and I is convex. If zg € int (X)
and g (xg) € int (I' (zg)) then the fixed point of T', V, is differentiable at x

and
Vi(z) = Fy (z,9 ()

Proof. We know V is concave. Since x( € int (X) and g (zp) € int (I' (zg))
then g (zg) € int (I' (x)) foflx € D a neighborhood of lzg then

W(z) =F(xz,9(x0)) + BV (g9 (x0))

and then W (z)I< V (z)land W (xg) = V (x¢) and W' (zg) = F (z0, 9 (x0))
so the result follows from the lemma.

Introduction to Dynamic Optimization Nr. 16






