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Outline Today’s Lecture

neoclassical growth application: use all theorems
constant returns to scale
homogenous returns

unbounded returns
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Constant Returns

F Az, \y) = AF (z,y), for A >0

and,
reX — drelX, forA>0

(i.,e. X is a cone)
yel'(r) = el (A\x), for A\ >0

(graph of I, A, is a cone)
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Restrictions

e since F' is unbounded is the sup < co? is the max well defined?

e can we apply the Principle of Optimality?
1. restrict I': for some « such that v6 < 1:
yel(z) = |yl < alz|

“state can't grow too fast”

2. restrict F': forsome 0 < B < o0

[F(z,y)| < B([l=]] + llyl) all (z,y) e A

“some weak boundedness condition: only allow unboundedness
along rays”
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Implications

|z¢]| < o ||@o|| for x € I (zg) all zp € X
Thus:

Bt |F(£Utaxt-|—1>|
BB (|l + [|ze41 )
B'B (a* [|lzoll + o' ||z

(Ba)" B(1+a) ||zol| — 0

[t () = tn—1 (2)]

A

so Uy (z) is Cauchy = wu, (z) — u ()
So we have Al and A2 — theorems 4.2 and 4.4
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supremum’s properties

e we established that v* : X — R
e note that u (A\z) = Au(x) and z € Il (xg) = Az € II (A\zo)

e v* must be homogenous of degree 1

v* (Axg) = 18;(1)1\) )u(x)
xrec xo
= sup u()ﬁ)
= A sup u(Z)
QNZGH(SC())
= " (z0)
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$t+1)

< Y BYF (2, 2040)]
t=0
< BZBt (@ [lzoll + " [|zo|)
< BH:BOHZ (Ba)" (1 + )
1+ o
= |B
= m] ol

— |v* (z)| < c||zg]| for some c € R
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What Space to Use?

(X J: X — R: fis continuous and homogenous of degree 1
(X) = and Jﬂ( II) is bounded
I (x
£l = sup I (@)] = sup L)
Hxﬁ . reX ||$||

e H (X) is complete
e define operator T': H (X) — H (X)

Tf(z) = max {F(z,y)+5f(y)}

yel(x)

}
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Properties

e Operator T': H(X) — H (X)

Tf(z) = max {F(z,y)+Bf(y);

yel'(z)
e note that for any v € H (X)

B v ()] < Ble ]| < (aB) ¢l — 0

thus 5*v (z;) — O for all feasible plans (Theorems 4.3 and 4.5 apply)
—> T has unique fixed point v € H (X)

e is 1" is a contraction?
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Is T' a contraction?

e Modify Blackwell’s condition (bounded functions) to show that T it is
a contraction; approach in SLP

e Note that

= e g ()}

oo [ ) IIyH<)}
<>{ (nazu B RTEANTT

e |dea: study related operator on functions space of continuous functions
defined for ||z|| =1
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Related operator

o Let )
X=Xn{z:|z| =1}

e Define T :C (X') — C (X') as
71 = mex {F @+ o0 £ (1) |

yel () |y
|z =1

T satifies all our assumptions about bounded returns!

— T is a contraction of modulus a8 < 1
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Yes, T is a contraction!

e since T is a contraction of modulus a8 < 1

sup ‘Tf — Tg‘ < afsup |f - g
re X rzeX

o for f e H(X)

(note that f € H (X)
e Thus

sup | Tf — Tg| = ||z sup |Tf ~ Tg| < aBsup |f — gl = afsup |f — g
xeX FeX FeX reX

so T is a contraction on H (X)
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Renormalizing

e studying a related operator is convenient in practice

— reduces dimensionality!
e ||z|| = 1 not necessarily most convenient normalization ...

e ... another normalization (much used)
if = (z',2%) € R" and 2' € R then use 2! =1
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Homogenous Returns of Degree 0

similar tricks work (see Alvarez and Stokey, JET)
e rough idea for: 6§ > 0
F Az, Ay) = \F (z,y)

F (2,y)] < B(|lz]| + yl)? all (z,9) € A

e I as before but now « such that v = 8a? < 1
e arguments are exactly parallel
e in particular, T" is a contraction of modulus ~

e for § < 0 and 6 = 0 several complications with origin...

but they can be surmounted
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Unbounded Returns and Monotonicity

e numerically cannot handle unbounded returns

e idea: 1" may not be a contraction

but all is not lost: it still is monotonic
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Theorem 4.14

1. Start from vg > v*

2. IF Tvy = v1 < vy then define v,, = T"vg (decreasing sequence)

3. IF lim, o vo (z,) < 0all z € I (zq) all zq

then clearly v, () — v (z) for all z € X, for some v : X — R
4. IF Tv = v (is this implied by v,, — v7)
THEN v = v*

e can be used for quadratic returns


jdas
Theorem 4.14


Unbounded Returns and Monotonicity

Squeezing argument:

1. suppose vy, (z) < v* (z) < oY ()

2. and T"vY (x) — v and T™0Y (2) — v
THEN v = v*
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Next Class

we're done with Chapter 4
next class: deterministic dynamics

Chapter 6

Boldrin-Montruccio 1986 paper
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